https://www.selleckchem.com/products/5-cholesten-3beta-ol-7-one.html These data suggest that the novel mutant allele may result in impaired differentiation of CD4+ T cells to CD4+/IL-17+ cells. The clinical phenotype of the disease in this patient was unique as it was dominated primarily by severe aphthous stomatitis and ulcerative esophagitis and only partly by typical CMC resulting in diagnostic delay. We suggest that patients with severe recurrent aphthous stomatitis and esophagitis should be evaluated for STAT1 GOF mutation. Based on the broad clinical spectrum of the disease, we also suggest that CMC and CMC disease may not be an appropriate term to define clinically STAT1 GOF mutation.The highly polymorphic human major histocompatibility complex (MHC) also known as the human leukocyte antigen (HLA) encodes class I and II genes that are the cornerstone of the adaptive immune system. Their unique diversity (>25,000 alleles) might affect the outcome of any transplant, infection, and susceptibility to autoimmune diseases. The recent rapid development of new next-generation sequencing (NGS) methods provides the opportunity to study the influence/correlation of this high level of HLA diversity on allele expression levels in health and disease. Here, we describe the NGS capture RNA-Seq method that we developed for genotyping all 12 classical HLA loci (HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB3, HLA-DRB4, and HLA-DRB5) and assessing their allelic imbalance by quantifying their allele RNA levels. This is a target enrichment method where total RNA is converted to a sequencing-ready complementary DNA (cDNA) library and hybridized to a complex pool of RNA-specific HLA biotinylated oligonucleotide capture probes, prior to NGS. This method was applied to 161 peripheral blood mononuclear cells and 48 umbilical cord blood cells of healthy donors. The differential allelic expression of 10 HLA loci (except for HLA-DRA and HLA-DPA1)