https://www.selleckchem.com/TGF-beta.html pe p50 were preserved. Mutation carriers had reduced p105 and p50 levels, indicating insufficient protein amounts as the most likely primary defect. In conclusion, the missense variant c.1049A>G caused a detrimental defect, preventing the persistent expression of both, the p105-Tyr350Cys precursor and the mature p50-Tyr350Cys. The variable clinical phenotypes among affected family members sharing an identical pathogenic NFKB1 variant support a disease mechanism provoked by a p105/p50 (haplo)insufficient condition.In tropical and subtropical regions, mosquito-borne dengue virus (DENV) infections can lead to severe dengue, also known as dengue hemorrhage fever, which causes bleeding, thrombocytopenia, and blood plasma leakage and increases mortality. Although DENV-induced platelet cell death was linked to disease severity, the role of responsible viral factors and the elicitation mechanism of abnormal platelet activation and cell death remain unclear. DENV and virion-surface envelope protein domain III (EIII), a cellular binding moiety of the virus particle, highly increase during the viremia stage. Our previous report suggested that exposure to such viremia EIII levels can lead to cell death of endothelial cells, neutrophils, and megakaryocytes. Here we found that both DENV and EIII could induce abnormal platelet activation and predominantly necrotic cell death pyroptosis. Blockages of EIII-induced platelet signaling using the competitive inhibitor chondroitin sulfate B or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK markedly ameliorated DENV- and EIII-induced thrombocytopenia, platelet activation, and cell death. These results suggest that EIII could be considered as a virulence factor of DENV, and that Nlrp3 inflammasome is a feasible target for developing therapeutic approaches against dengue-induced platelet defects.Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress im