https://www.selleckchem.com/products/cq31.html Humans learn quickly which actions cause them harm. As social beings, we also need to learn to avoid actions that hurt others. It is currently unknown whether humans are as good at learning to avoid others' harm (prosocial learning) as they are at learning to avoid self-harm (self-relevant learning). Moreover, it remains unclear how the neural mechanisms of prosocial learning differ from those of self-relevant learning. In this fMRI study, 96 male human participants learned to avoid painful stimuli either for themselves or for another individual. We found that participants performed more optimally when learning for the other than for themselves. Computational modeling revealed that this could be explained by an increased sensitivity to subjective values of choice alternatives during prosocial learning. Increased value sensitivity was further associated with empathic traits. On the neural level, higher value sensitivity during prosocial learning was associated with stronger engagement of the ventromedial PFC d to protect oneself (self-relevant learning). We found that human participants performed better during prosocial learning than during self-relevant learning, as they were more sensitive toward the information they collected when making choices for the other. Prosocial learning recruited similar brain areas as self-relevant learning, but additionally involved parts of the "social brain" that underpin perspective-taking and self-other distinction. Our findings suggest that people show an inherent tendency toward "intuitive" prosociality.Although the decisions of our daily lives often occur in the context of temporal and reward structures, the impact of such regularities on decision-making strategy is poorly understood. Here, to explore how temporal and reward context modulate strategy, we trained 2 male rhesus monkeys to perform a novel perceptual decision-making task with asymmetric rewards and time-varying evidence