https://www.selleckchem.com/products/ykl5-124.html Dietary emulsifiers are widely used in industrially processed foods, although the effects of these food additives on human gut microbiota are not well studied. Here, we investigated the effects of five different emulsifiers [glycerol monoacetate, glycerol monostearate, glycerol monooleate, propylene glycol monostearate, and sodium stearoyl lactylate (SSL)] on fecal microbiota in vitro. We found that 0.025% (w/v) of SSL reduced the relative abundance of the bacterial class Clostridia and others. The relative abundance of the families Clostridiaceae, Lachnospiraceae, and Ruminococcaceae was substantially reduced whereas that of Bacteroidaceae and Enterobacteriaceae was increased. Given the marked impact of SSL on Clostridia, we used genome reconstruction to predict community-wide production of short-chain fatty acids, which were experimentally assessed by GC-MS analysis. SSL significantly reduced concentrations of butyrate, and increased concentrations of propionate compared to control cultures. The presence of SSL increased lipopolysaccharide, LPS and flagellin in cultured communities, thereby enhancing the proinflammatory potential of SSL-selected bacterial communities.Treatments of wastewater and fresh produce commonly employ chlorine as an antimicrobial. However, there are increasing levels of concerns regarding the safety and antimicrobial efficacy of chlorine treatments. Numerous studies have reported the antimicrobial properties of chlorine dioxide (ClO2) treatment in a variety of applications but information regarding how ClO2 affects bacteria is limited. In the present study, a mixed-method approach utilizing both quantitative and qualitative methodologies was used to observe Escherichia coli O157H7 membrane damage after exposure to ClO2 (2.5, 5, or 10 mg/L) for 5, 10, or 15 min. For comparison, controls of 0.1% peptone, 70% isopropanol, and 10 mg/L NaOCl were applied for 15 min. After treatment, cells were e