https://www.selleckchem.com/products/arv-771.html X-ray diffraction is the main source of three-dimensional structural information. In total, more than 1.5 million crystal structures have been refined and deposited in structural databanks (PDB, CSD and ICSD) to date. Almost 99.7% of them were obtained by approximating atoms as spheres within the independent atom model (IAM) introduced over a century ago. In this study, X-ray datasets for single crystals of hydrated α-oxalic acid were refined using several alternative electron density models that abandon the crude spherical approximation the multipole model (MM), the transferable aspherical atom model (TAAM) and the Hirshfeld atom refinement (HAR) model as a function of the resolution of X-ray data. The aspherical models (MM, TAAM, HAR) give far more accurate and precise single-crystal X-ray results than IAM, sometimes identical to results obtained from neutron diffraction and at low resolution. Hence, aspherical approaches open new routes for improving existing structural information collected over the last century.Charge density waves spontaneously breaking lattice symmetry through periodic lattice distortion, and electron-electron and electron-phonon inter-actions, can lead to a new type of electronic band structure. Bulk 2H-TaS2 is an archetypal transition metal dichalcogenide supporting charge density waves with a phase transition at 75 K. Here, it is shown that charge density waves can exist in exfoliated monolayer 2H-TaS2 and the transition temperature can reach 140 K, which is much higher than that in the bulk. The degenerate breathing and wiggle modes of 2H-TaS2 originating from the periodic lattice distortion are probed by optical methods. The results open an avenue to investigating charge density wave phases in two-dimensional transition metal dichalcogenides and will be helpful for understanding and designing devices based on charge density waves.Cryogenic X-ray diffraction is a powerful tool for crystall