https://www.selleckchem.com/products/c646.html 97)) and validation (AUC=0.74) cohorts compared with the programmed death ligand 1 positivity (AUC=0.52), tumor mutational burden (AUC=0.69) and microsatellite instability status (AUC=0.59) in the combined cohort. Moreover, patients with a high IO-score also exhibited a prolonged overall survival compared with patients with a low IO-score (discovery cohort HR, 0.29; 95% CI 0.15 to 0.56; p=0.003; validation cohort HR, 0.32; 95% CI 0.10 to 1.05; p=0.04). Taken together, our results indicated the potential of IO-score as a biomarker for immunotherapy in patients with gastrointestinal cancers. Despite the great achievements made in immune-checkpoint-blockade (ICB) in cancer therapy, there are no effective predictive biomarkers in gastrointestinal (GI) cancer. This study included 93 metastatic GI patients treated with ICBs. The first cohort comprising 73 GI cancer patients were randomly assigned into discovery (n=44) and validation (n=29) cohorts. Comprehensive genomic profiling was performed on all samples to determine tumor mutational burden (TMB) and copy-number alterations (CNAs). A subset of samples was collected for RNA immune oncology (IO) panel sequencing, microsatellite instability (MSI)/mismatch repair and program death ligand 1 (PD-L1) expression evaluation. In addition, 20 gastric cancer (GC) patients were recruited as the second validation cohort. In the first cohort of 73 GI cancer patients, a lower burden of CNA was observed in patients with durable clinical benefit (DCB). In both the discovery (n=44) and validation (n=29) subsets, lower burden of CNA was associated with an improved clinical benefit and better overall survival (OS). Efficacy also correlated with a higher TMB. Of note, a combinatorial biomarker of TMB and CNA may better stratify DCB patients from ICB treatment, which was further confirmed in the second validation cohort of 20 GC patients. Finally, patients with lower burden of CNA revealed incr