Acinetobacter baumannii is an opportunistic pathogen that presents a serious clinical challenge due to its increasing resistance to all available antibiotics. Phage therapy has been introduced recently to treat antibiotic-incurable A. baumannii infections. In search for new A. baumannii specific bacteriophages, 20 clinical A. baumannii strains were used in two pools in an attempt to enrich phages from sewage. The enrichment resulted in induction of resident prophage(s) and three temperate bacteriophages, named vB_AbaS_fEg-Aba01, vB_AbaS_fLi-Aba02 and vB_AbaS_fLi-Aba03, all able to infect only one strain (#6597) of the 20 clinical strains, were isolated. Morphological characteristics obtained by transmission electron microscopy together with the genomic information revealed that the phages belong to the family Siphoviridae. The ca. 35 kb genomic sequences of the phages were >99% identical to each other. The linear ds DNA genomes of the phages contained 10 nt cohesive end termini, 52-54 predicted genes, an attP site and one tRNA gene each. A database search revealed an >99% identical prophage in the genome of A. baumannii strain AbPK1 (acc. no. CP024576.1). Over 99% identical prophages were also identified from two of the original 20 clinical strains (#5707 and #5920) and both were shown to be spontaneously inducible, thus very likely being the origins of the isolated phages. The phage vB_AbaS_fEg-Aba01 was also able to lysogenize the susceptible strain #6597 demonstrating that it was fully functional. The phages showed a very narrow host range infecting only two A. https://www.selleckchem.com/products/AZD6244.html baumannii strains. In conclusion, we have isolated and characterized three novel temperate Siphoviridae phages that infect A. baumannii.Vitamin D deficiency is a global health problem due to its high prevalence and its negative consequences on musculoskeletal and extra-skeletal health. In our comparative review of the two exogenous vitamin D supplementation options most used in our care setting, we found that cholecalciferol has more scientific evidence with positive results than calcifediol in musculoskeletal diseases and that it is the form of vitamin D of choice in the most accepted and internationally recognized clinical guidelines on the management of osteoporosis. Cholecalciferol, unlike calcifediol, guarantees an exact dosage in IU (International Units) of vitamin D and has pharmacokinetic properties that allow either daily or even weekly, fortnightly, or monthly administration in its equivalent doses, which can facilitate adherence to treatment. Regardless of the pattern of administration, cholecalciferol may be more likely to achieve serum levels of 25(OH)D (25-hydroxy-vitamin D) of 30-50 ng/mL, an interval considered optimal for maximum benefit at the lowest risk. In summary, the form of vitamin D of choice for exogenous supplementation should be cholecalciferol, with calcifediol reserved for patients with liver failure or severe intestinal malabsorption syndromes.Improved in vitro models of human organs for predicting drug efficacy, interactions, and disease modelling are crucially needed to minimize the use of animal models, which inevitably display significant differences from the human disease state and metabolism. Inside the body, cells are organized either in direct contact or in close proximity to other cell types in a tightly controlled architecture that regulates tissue function. To emulate this cellular interface in vitro, an advanced cell culture system is required. In this paper, we describe a set of compartmentalized silicon-based microfluidic chips that enable co-culturing several types of cells in close proximity with enhanced cell-cell interaction. In vivo-like fluid flow into and/or from each compartment, as well as between adjacent compartments, is maintained by micro-engineered porous barriers. This porous structure provides a tool for mimicking the paracrine exchange between cells in the human body. As a demonstrating example, the microfluidic system was tested by culturing human adipose tissue that is infiltrated with immune cells to study the role if the interplay between the two cells in the context of type 2 diabetes. However, the system provides a platform technology for mimicking the structure and function of single- and multi-organ models, which could significantly narrow the gap between in vivo and in vitro conditions.Various diseases, including bacterial panicle blight (BPB) and sheath rot, threaten rice production. It has been established that Burkholderia glumae (B. glumae) is the causative agent of the above mentioned pathologies. In the present study, antagonistic activity, growth promotion, and the metabolite profiles of two rhizobacteria, isolated in different paddy fields, were assessed against B. glumae. Strains were identified based on 16S rRNA gene sequences, and the phylogenetic analyses showed that both strains belong to the genus Enterobacter, with high similarity to the strain Enterobacter tabaci NR146667.2 (99%). The antagonistic activity was assessed with the disc diffusion method. Active fractions were isolated through a liquid/liquid extraction with ethyl acetate (EtOAc) from the fermentation media, and their antibacterial activities were evaluated following the Clinical and Laboratory Standards Institute (CLSI) guidelines. The Pikovskaya modified medium was used to test the ability of in vitro inorganic phosphorus solubilization, and BSB1 proved to be the best inorganic phosphorus solubilizer, with a solubilization index (SI) of 4.5 ± 0.2. The glass-column fractionation of the EtOAc extracted from BCB11 produced an active fraction (25.9 mg) that inhibited the growth of five B. glumae strains by 85-95%. Further, metabolomic analysis, based on GC-MS, showed 3-phenylpropanoic acid (3-PPA) to be the main compound both in this fraction (46.7%), and in the BSB1 extract (28.6%). This compound showed antibacterial activity against all five strains of B. glumae with a minimum inhibitory concentration (MIC) of 1000 mg/L towards all of them. The results showed that rice rhizosphere microorganisms are a source of compounds that inhibit B. glumae growth and are promising plant growth promoters (PGP).