https://www.selleckchem.com/products/rvx-208.html Part II of this special edition contains the remaining 11 papers arising from a Hooke discussion meeting held in March 2020 devoted to exploring the current status of inertial confinement fusion research worldwide and its application to electrical power generation in the future, via the development of an international inertial fusion energy programme. It builds upon increased coordination within Europe over the past decade by researchers supported by the EUROFusion Enabling Research grants, as well as collaborations that have arisen naturally with some of America's and Asia's leading researchers, both in the universities and national laboratories. The articles are devoted to informing an update to the European roadmap for an inertial fusion energy demonstration reactor, building upon the commonalities between the magnetic and inertial fusion communities' approaches to fusion energy. A number of studies devoted to understanding the physics barriers to ignition on current facilities are then presented. The special issue concludes with four state-of-the-art articles describing recent significant advances in fast ignition inertial fusion research. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.Two-dimensional particle-in-cell simulations are used to explore collisionless shock acceleration in the corona plasma surrounding the compressed core of an inertial confinement fusion pellet. We show that an intense laser pulse interacting with the long scale-length plasma corona is able to launch a collisionless shock around the critical density. The nonlinear wave travels up-ramp through the plasma reflecting and accelerating the background ions. Our results suggest that protons with characteristics suitable for ion fast ignition may be achieved in this way. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.La