https://www.selleckchem.com/products/trimethoprim.html The available data on trace elements (TE) of deep-sea organisms is scarce and nonexistent for rare earth elements (REE). Hence, this study characterizes REE and TE in five porifera genera (Jaspis, Geodia, Hamacantha, Leiodermatium, Poliopogon) collected in deep-sea areas (between 481 and 2656 m) of the North Atlantic. Aluminium was the most common TE while lead was the less abundant. These sponges showed an increased accumulation of TE compared with other probably influenced by volcanic activity. Poliopogon amadou sampled at the deepest location presented the highest concentration of all REE. All studied species exhibited a Light REE enrichment in comparison to Heavy REE and showed a negative Ce anomaly with a less conspicuous Eu depletion. Besides the establishment of a baseline for future comparisons, this study provides the first record of REE in a sessile deep-sea marine invertebrate group.The conventional wastewater treatment system such as bacteria, is not able to remove recalcitrant micropollutants effectively. While, fungi have shown high capacity in degradation of recalcitrant compounds. Biochar, on the other hand, has gained attention in water and wastewater treatment as a low cost and sustainable adsorbent. This paper aims to review the recent applications of three major fungal divisions including Basidiomycota, Ascomycota, and Mucoromycotina, in organic micropollutants removal from wastewater. Moreover, it presents an insight into fungal bioreactors, fungal biofilm and immobilization system. Biochar adsorption capacities for organic micropollutants removal under different operating conditions are summarized. Finally, few recommendations for further research are established in the context of the combination of fungal biofilm with the technologies relying on the adsorption by porous carbonaceous materials.There is a concern that the Fly River plume from Papua New Guinea (PNG) may be delivering mine-der