https://www.selleckchem.com/products/bb-94.html Parkinson's disease (PD)-related phenotypes can vary among patients substantially, including response to dopaminergic treatment in terms of efficacy and occurrence of adverse events. Many pharmacogenetic studies have already been conducted to find genetic markers of response to dopaminergic treatment. Integration of genetic and clinical data has already resulted in construction of clinical pharmacogenetic models for prediction of adverse events. However, the results of pharmacogenetic studies are inconsistent. More comprehensive genome-wide approaches are needed to find genetic biomarkers of PD-related phenotypes to better explain the variability in response to treatment. These genetic markers should be integrated with clinical, environmental, imaging, and other omics data to build clinically useful algorithms for personalization of PD management.The global pandemic of coronavirus disease 2019 (COVID-19) is a disaster for human society. A convenient and reliable neutralization assay is very important for the development of vaccines and novel drugs. In this study, a G protein-deficient vesicular stomatitis virus (VSVdG) bearing a truncated spike protein (S with C-terminal 18 amino acid truncation) was compared to that bearing the full-length spike protein of SARS-CoV-2 and showed much higher efficiency. A neutralization assay was established based on VSV-SARS-CoV-2-Sdel18 pseudovirus and hACE2-overexpressing BHK21 cells (BHK21-hACE2 cells). The experimental results can be obtained by automatically counting the number of EGFP-positive cells at 12 h after infection, making the assay convenient and high-throughput. The serum neutralizing titer measured by the VSV-SARS-CoV-2-Sdel18 pseudovirus assay has a good correlation with that measured by the wild type SARS-CoV-2 assay. Seven neutralizing monoclonal antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 S protein were obtained. This efficient and reli