https://www.selleckchem.com/products/bicuculline.html In redox metalloenzymes, the process of electron transfer often involves the concerted movement of a proton. These processes are referred to as proton-coupled electron transfer, and they underpin a wide variety of biological processes, including respiration, energy conversion, photosynthesis, and metalloenzyme catalysis. The mechanisms of proton delivery are incompletely understood, in part due to an absence of information on exact proton locations and hydrogen bonding structures in a bona fide metalloenzyme proton pathway. Here, we present a 2.1-Å neutron crystal structure of the complex formed between a redox metalloenzyme (ascorbate peroxidase) and its reducing substrate (ascorbate). In the neutron structure of the complex, the protonation states of the electron/proton donor (ascorbate) and all of the residues involved in the electron/proton transfer pathway are directly observed. This information sheds light on possible proton movements during heme-catalyzed oxygen activation, as well as on ascorbate oxidation.Tol-Pal is a multiprotein system present in the envelope of Gram-negative bacteria. Inactivation of this widely conserved machinery compromises the outer membrane (OM) layer of these organisms, resulting in hypersensitivity to many antibiotics. Mutants in the tol-pal locus fail to complete division and form cell chains. This phenotype along with the localization of Tol-Pal components to the cytokinetic ring in Escherichia coli has led to the proposal that the primary function of the system is to promote OM constriction during division. Accordingly, a poorly constricted OM is believed to link the cell chains formed upon Tol-Pal inactivation. However, we show here that cell chains of E. coli tol-pal mutants are connected by an incompletely processed peptidoglycan (PG) layer. Genetic suppressors of this defect were isolated and found to overproduce OM lipoproteins capable of cleaving the glycan strands of