https://www.selleckchem.com/products/dmx-5084.html Colony formation is a key process for the occurrence of Microcystis blooms. In order to inhibit colony formation of Microcystis at high level of iron using humic acid, unicellular Microcystis aeruginosa was cultivated in laboratory treated with varying concentrations of iron and humic acid. Our results showed that the extracellular polysaccharides (EPS) content and average colony size increased from 0.57 pg cells-1 and 4.0 μm to 0.93 pg cells-1 and 26.1 μm, respectively, while iron concentration increased from 0.68 mg L-1 to 6.8 mg L-1, suggesting that high level of iron stimulated EPS secretion and induced unicellular Microcystis to form colonies. Transcriptome analysis showed that two genes described as glycosyltransferases (BH695-2217 and BH695-3696) were significantly up-regulated while EPS content increased with increasing iron concentration indicating that iron may regulate the expression of genes involved in polysaccharide synthesis. When treated with 10 mg C L-1 humic acid at high level of iron, the EPS content and average colony size decreased by 35.5% and 56.3%, respectively, revealing that humic acid inhibited EPS secretion under high level of iron condition, and ultimately inhibited colony formation of Microcystis. Our results suggested that humic acid could be used as an agentia inhibiting large colony formation of Microcystis and thereby reducing the occurrence of Microcystis blooms. The aim of the report is to summarise the progress made during a six-month pilot project expanding arts therapies provision from an inpatient service to community services, in a National Health Service health board's Older Adult Mental Health Services, in response to the need for direct therapy with older adults who have severe cognitive impairment and communication difficulties arising from dementia and/or complex mental health difficulties. This is a case report on a pilot project. The level of need for the service was e