Results Although all participants showed benefits of SIT such as increased VO2peak, the increase in anaerobic cycling power varied between participants. We identified 17 high responders and nine low responders, whose average power outputs were 0.80 ± 0.22 and 0.22 ± 0.19 W/kg, respectively. The HR achieved during any of the training sessions did not differ between high and low responders. The lactate kinetics did not differ between groups before and after the intervention. Training resulted in a more rapid recovery of MVC without any discernible differences between the high and low responders. Conclusion The differences in the responses to SIT are not dependent on the exertion level during training.With the deepening of industrialization and urbanization in China, air pollution has become the most serious environmental issue due to huge energy consumption, which threatens the health of residents and the sustainable development of the country. Increasing attention has been paid to the efficiency evaluation of industrial system due to its fast development and severe air pollution emissions, but the efficiency evaluation on China's industrial waste gas still has scope for improvement. This paper proposes a global non-radial Network Data Envelopment Analysis (NDEA) model from the perspective of pollution prevention (PP) and end-of-pipe treatment (ET), to explore the potential reduction of generation and emission of air pollutants in China's industrial system. Given the differences of different air pollution treatment capacities, the ET stage is further subdivided into three parallel sub-stages, corresponding to SO2, NOX, and soot and dust (SD), respectively. Then, grey relation analysis (GRA) is adopted to sub-stages, air pollutants and areas.This study explores the relationship between the spatial distribution of relative transfer location (i.e., the location of the transfer point in relation to the trip origin and destination points) and the attractiveness of the transit service using smart card data. Transfer is an essential component of the transit trip that allows people to reach more destinations, but it is also the main factor that deters the smartness of the public transit. The literature quantifies the inconvenience of transfer in terms of extra travel time or cost incurred during transfer. Unlike this conventional approach, the new "transfer location" variable is formulated by mapping the spatial distribution of relative transfer locations on a homogeneous geocoordinate system. The clustering of transfer points is then quantified using grid-based hierarchical clustering. The transfer location factor is formulated as a new explanatory variable for mode choice modelling. This new variable is found to be statistically significant, and no correlation is observed with other explanatory variables, including transit travel time. These results imply that smart transit users may perceive the travel direction (to transfer) as important, in addition to the travel time factor, which would influence their mode choice. Travellers may disfavour even adjacent transfer locations depending on their relative location. The findings of this study will contribute to improving the understanding of transit user behaviour and impact of the smartness of transfer, assist smart transport planning and designing of new transit routes and services to enhance the transfer performance.Coarse cereal intake has been reported to be associated with reduced risk of colorectal cancer. However, evidence from intervention studies is absent and the molecular basis of this phenomenon remains largely unexplored. This study sought to investigate the effects of foxtail millet and rice, two common staple grains in Asia, on the progression of colitis-associated colorectal cancer (CAC) and define the mechanism involved. In total, 40 BALB/c mice were randomized into four groups. The Normal and azoxymethane/dextran sodium sulfate (AOM/DSS) groups were supplied with an AIN-93G diet, while the millet- and rice-treated groups were supplied with a modified AIN-93G diet. https://www.selleckchem.com/products/unc0379.html Compared to the AOM/DSS-induced CAC mice supplemented with rice, an increased survival rate, suppressed tumor burden, and reduced disease activity index were observed in the millet-treated group. The levels of IL-6 and IL-17 were decreased in the millet-treated group compared to both the AOM/DSS and AOM/DSS + rice groups. Millet treatment inhibited the phosphorylation of STAT3 and the related signaling proteins involved in cell proliferation, survival and angiogenesis. These beneficial effects were mediated by the activation of gut receptors AHR and GPCRs via the microbial metabolites (indole derivates and short-chain fatty acids) of foxtail millet. Moreover, millet-treatment increased the abundance of Bifidobacterium and Bacteroidales_S24-7 compared to the rice-treated mice. This study could help researchers to develop better dietary patterns that work against inflammatory bowel disease (IBD) and for CAC patients.The alien invasive insect pest Spodoptera frugiperda Smith (Lepidoptera Noctuidae), commonly referred to as fall armyworm (FAW), is causing significant losses to maize production in Africa since its detection in 2016. Despite being the primary insect pest of the main food crop in the country, researchers have concentrated their efforts on methods of control, and there are no published studies on its seasonality which could assist farmers in delivering effective methods of control in periods of heavy infestations. The primary goal of this study was to assess the seasonal dynamics of FAW in maize fields. We conducted a field survey from May to August 2019 (dry season of the 2018/2019 cropping season) and in December 2019 and January 2020 (rainy season of the 2019/2020 cropping season) in 622 maize fields. In each field, 20 plants were selected in a "W" pattern and checked for the presence of FAW egg masses and/or larvae. Plants were also assessed for damage. Preliminary results show increased infestation, damages, and population density of FAW in the dry season. Our results suggest that early planting of maize in the primary cropping season may significantly reduce the infestation and damage by FAW when compared to the dry season.