Laminin α2 gene (LAMA2)-related Congenital Muscular Dystrophy (CMD) was distinguished by a defining central nervous system (CNS) abnormality-aberrant white matter signals by MRI-when first described in the 1990s. In the past 25 years, researchers and clinicians have expanded our knowledge of brain involvement in LAMA2-related CMD, also known as Congenital Muscular Dystrophy Type 1A (MDC1A). Neurological changes in MDC1A can be structural, including lissencephaly and agyria, as well as functional, including epilepsy and intellectual disability. Mouse models of MDC1A include both spontaneous and targeted LAMA2 mutations and range from a partial loss of LAMA2 function (e.g., dy2J/dy2J ), to a complete loss of LAMA2 expression (dy3K/dy3K). Diverse cellular and molecular changes have been reported in the brains of MDC1A mouse models, including blood-brain barrier dysfunction, altered neuro- and gliogenesis, changes in synaptic plasticity, and decreased myelination, providing mechanistic insight into potential neurological dysfunction in MDC1A. In this review article, we discuss selected studies that illustrate the potential scope and complexity of disturbances in brain development in MDC1A, and as well as highlight mechanistic insights that are emerging from mouse models.Medium-chain fatty acids (MCFA) are dietary components with a chain length ranging from 6 to 12 carbon atoms. MCFA can cross the blood-brain barrier and in the brain can be oxidized through mitochondrial β-oxidation. As components of ketogenic diets, MCFA have demonstrated beneficial effects on different brain diseases, such as traumatic brain injury, Alzheimer's disease, drug-resistant epilepsy, diabetes, and cancer. Despite the interest in MCFA effects, not much information is available about MCFA metabolism in the brain. In this study, with a gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach, coupled with multivariate data analyses, we followed the metabolic changes of U87MG glioblastoma cells after the addition of octanoic (C8), or decanoic (C10) acids for 24 h. Our analysis highlighted significant differences in the metabolism of U87MG cells after the addition of C8 or C10 and identified several metabolites whose amount changed between the two groups of treated cells. Overall, metabolic pathway analyses suggested the citric acid cycle, Warburg effect, glutamine/glutamate metabolism, and ketone body metabolism as pathways influenced by C8 or C10 addition to U87MG cells. Our data demonstrated that, while C8 affected mitochondrial metabolism resulting in increased ketone body production, C10 mainly influenced cytosolic pathways by stimulating fatty acid synthesis. https://www.selleckchem.com/products/geneticin-g418-sulfate.html Moreover, glutamine might be the main substrate to support fatty acids synthesis in C10-treated cells. In conclusion, we identified a metabolic signature associated with C8 or C10 addition to U87MG cells that can be used to decipher metabolic responses of glioblastoma cells to MCFA treatment.This special issue of Frontiers in Neuroscience-Neurodegeneration celebrates the 50th anniversary of John Olney's seminal work introducing the concept of excitotoxicity as a mechanism for neuronal cell death. Since that time, fundamental research on the pathophysiological activation of glutamate receptors has played a central role in our understanding of excitotoxic cellular signaling pathways, leading to the discovery of many potential therapeutic targets in the treatment of acute or chronic/progressive neurodegenerative disorders. Importantly, excitotoxic signaling processes have been found repeatedly to be closely intertwined with oxidative cellular cascades. With this in mind, this review looks back at long-standing collaborative efforts by the authors linking cellular redox status and glutamate neurotoxicity, focusing first on the discovery of the redox modulatory site of the N-methyl-D-aspartate (NMDA) receptor, followed by the study of the oxidative conversion of 3,4-dihydroxyphenylalanine (DOPA) to the non-NMDA receptor agonist and neurotoxin 2,4,5-trihydroxyphenylalanine (TOPA) quinone. Finally, we summarize our work linking oxidative injury to the liberation of zinc from intracellular metal binding proteins, leading to the uncovering of a signaling mechanism connecting excitotoxicity with zinc-activated cell death-signaling cascades.Congenital visual impairment may have a negative impact on spatial abilities and result in severe delays in perceptual, social, motor, and cognitive skills across life span. Despite several evidences have highlighted the need for an early introduction of re-habilitation interventions, such interventions are rarely adapted to children's visual capabilities and very few studies have been conducted to assess their long-term efficacy. In this work, we present a case study of a visually impaired child enrolled in a newly developed re-habilitation intervention aimed at improving the overall development through the diversification of re-habilitation activities based on visual potential and developmental profile, with a focus on spatial functioning. We argue that intervention for visually impaired children should be (a) adapted to their visual capabilities, in order to increase re-habilitation outcomes, (b) multi-interdisciplinary and multidimensional, to improve adaptive abilities across development, (c) multisensory, to promote the integration of different perceptual information coming from the environment.In the search for safer, non-addictive analgesics, kappa opioid receptor (KOPr) agonists are a potential target, as unlike mu-opioid analgesics, they do not have abuse potential. Salvinorin A (SalA) is a potent and selective KOPr agonist, however, clinical utility is limited by the short duration of action and aversive side effects. Biasing KOPr signaling toward G-protein activation has been highlighted as a key cellular mechanism to reduce the side effects of KOPr agonists. The present study investigated KOPr signaling bias and the acute antinociceptive effects and side effects of two novel analogs of SalA, 16-Bromo SalA and 16-Ethynyl SalA. 16-Bromo SalA showed G-protein signaling bias, whereas 16-Ethynyl SalA displayed balanced signaling properties. In the dose-response tail-withdrawal assay, SalA, 16-Ethynyl SalA and 16-Bromo SalA were more potent than the traditional KOPr agonist U50,488, and 16-Ethynyl SalA was more efficacious. 16-Ethynyl SalA and 16-Bromo SalA both had a longer duration of action in the warm water tail-withdrawal assay, and 16-Ethynyl had greater antinociceptive effect in the hot-plate assay, compared to SalA.