https://www.selleckchem.com/ As a result, the hybrid electrode achieved a high reversible capacity of 535 mAh g-1 at 0.1 A g-1 and superior cycling performance (343 mAh g-1 after 1000 cycles at 1 A g-1 with a capacity retention of 87%) in a fluorine-free carbonate electrolyte.We report a versatile method to form bacterial cellulose coatings through simple dip-coating of 3D objects in suspensions of cellulose-producing bacteria. The adhesion of cellulose-secreting bacteria on objects was promoted through surface roughness and chemistry. Immobilized bacteria secreted highly porous hydrogels with high water content directly from the surface of a variety of materials. The out-of-plane orientation of cellulose fibers present in this coating leads to high mechanical stability and energy dissipation with minimal cellulose concentration. The conformal, biocompatible, and lubricious nature of the in situ grown cellulose surfaces makes the coated 3D objects attractive for biomedical applications.A facile and efficient plasma treatment strategy has been applied for the first time to dope heteroatom nitrogen (N) into Q-graphene (QG) under ambient temperature toward a carbon-based green nanozyme. It was discovered that the resulting N doped QG (N-QG) nanozyme can present the greatly enhanced catalysis activity, which is nearly 5-fold higher than that of pristine QG, as comparably revealed by the kinetic studies. Herein, the plasma treatment-assisted N doping could improve the conductivity (hydrophilicity) and create the surface defects of QG so as to promote the electron transferring toward the enhanced catalytic activities of N-QG. Furthermore, the catalase, superoxide dismutase, and oxidase-like catalysis activities of N-QG were explored, indicating the N doping could endow the obtained nanozyme with a high specificity of peroxidase-like catalysis. The application feasibility of the developed N-QG nanozyme was demonstrated subsequently by the catalysis-based colorimetric assay