https://www.selleckchem.com/products/cct241533-hydrochloride.html 64 to 12 ± 0.96 μg/L and 32 ± 2.56 to 40 ± 3.2 μg/kg of DEHP, respectively. The risk quotient of 19.17 for samples in around treatment indicated highest risk, whereas groundwater samples had a risk quotient of 1-2 indicating relative risk to aquatic organisms. In addition, the study highlighted the source, possible entry pathways, and management strategies including treatment aspects to draw an understanding of the distribution and potential ecological imbalances with contamination of DEHP in the urban sector. PRACTITIONER POINTS Understand the fate and transportation of DEHP in urban wastewater. Primary investigation and assessment to possible health and environmental risks of DEHP contamination in urban wastewater. Revealed the associated health risks and proposed possible management strategies.Predicting the potential fate of a species in the face of climate change requires knowing the distribution of molecular adaptations across the geographic range of the species. In this work, we analysed 79 genomes of Theobroma cacao, an Amazonian tree known for the fruit from which chocolate is produced, to evaluate how local and regional molecular signatures of adaptation are distributed across the natural range of the species. We implemented novel techniques that incorporate summary statistics from multiple selection scans to infer selective sweeps. The majority of the molecular adaptations in the genome are not shared among populations. We show that ~71.5% of genes under selection also show significant associations with changes in environmental variables. Our results support the interpretation that these genes contribute to local adaptation of the populations in response to abiotic factors. We also found strong patterns of molecular adaptation in a diverse array of disease resistance genes (6.5% of selective sweeps), suggesting that differential adaptation to pathogens also contributes significantly to loca