Copyright © 2020 American Chemical Society.Thermal conductivity is an essential thermodynamic data in chemical engineering applications. Liquid aliphatic oxygen-containing organic compounds are important organic intermediates and raw materials. As a result, estimating thermal conductivity of liquid aliphatic oxygen-containing organic compounds is of significance in industry production. In this study, the genetic function approximation method was applied to screen descriptors and develop a 6-descriptor linear quantitative structure-property relationship model. The entire data set of these compounds covering 1064 thermal conductivity values was divided into 694-member training set, 298-member test set, and 72-member prediction set. The average absolute relative deviation of the training set, test set, and prediction set were 4.14, 4.41, and 4.16%, respectively. Model validation and Y-randomization test proved that the developed model has goodness-of-fit, predictive power, and robustness. In addition, the applicability domain of the developed model was visualized by the Williams plot. This study can provide a convenient method to estimate the thermal conductivity for researchers in chemical engineering production. Copyright © 2020 American Chemical Society.Antibacterial biomaterials with kill-resist dual functions by combining multiple active components have been constructed, with a final aim at decreasing the incidence of biomaterial-centered infection. Self-assemblies of bactericidal ZnO or Ag-ZnO nanoparticles (NPs) with triblock copolymers, poly(ethylene glycol)-b-poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(ethylene glycol) (PEG-PHBV-PEG), showed a hydrophobic PHBV layer on NPs with PEG segments exposed outside via hydrogen bonding, resulting in long PEG (M w = 2000) aggregation and short PEG (M w = 1000) aggregation, respectively. These nanocomposite aggregations released ZnO or Ag-ZnO rapidly within initial few hours, and about 42-45% of NPs were left in the nanocomposites in deionized water for 16 d to improve the long-term antibacterial activity further. At the concentration below 50 μg/mL, the nanocomposite aggregation was cell-compatible with ATDC5 and showed sterilization rates over 91% against Escherichia coli and 98% against Staphylococcus aureus. Long PEG aggregation showed greater cell proliferation capacity than short PEG aggregation, as well as better bacterial resistance and bactericidal activity against both E. coli and S. aureus. The flexible self-assembling antibacterial NPs with antifouling block copolymers via adjusting the component ratio or the segment length have shown premise in the construction of the dual-function antibacterial materials. Copyright © 2020 American Chemical Society.A facile and diversity-oriented approach has been developed for the synthesis of pyrrole-, pyridine-, or azepine-appended (het)aryl aminoamides via the N-allylation/homoallylation-ring-closing metathesis (RCM) strategy. Microwave condition was efficiently utilized for N-allylation of (het)aryl aminoamides to synthesize di-, tri-, and tetra-allyl/homoallylated RCM substrates in good yields. All of the RCM substrates were successfully converted to respective pyrroles 6a-h, 13a,b, 15a,b, pyridines 11a-d, 13c, and azepines 7a,b via RCM. All of the five-, six-, and seven-membered N-heterocycles were synthesized in shorter reaction times with excellent yields without isomerization products. A one-pot reaction to synthesize compounds 6a and 6b without isolating corresponding RCM substrates was achieved successfully. The synthetic utility of the compound 6b has been demonstrated by synthesizing biaryl derivatives 17a,b under the microwave Suzuki coupling reaction condition. Copyright © 2020 American Chemical Society.Vascular endothelial growth factor receptors (VEGFRs) are well recognized as significant biomarkers of tumor angiogenesis. Herein, we have developed a first-of-its-kind peptide-based VEGFR positron emission tomography (PET) tracer. The novel [64Cu]VEGF125-136 peptide possessed satisfactory radio-characteristics and showed good specificity for the visualization of VEGFR in various mouse models, in which the tumor-specific radioactivity uptake was highly correlated to the VEGFR expression level. Moreover, the tracer showed high tumor uptake (ca. 5.89 %ID/g at 20 min postinjection in B16F10 mice) and excellent pharmacokinetics, achieving the maximum imaging quality within 1 h after injection. https://www.selleckchem.com/products/ITF2357(Givinostat).html These features convey [64Cu]VEGF125-136 as a promising, clinically translatable PET tracer for the imaging of tumor angiogenesis. Copyright © 2020 American Chemical Society.H-Abstraction reactions occurring during electron impact ionization processes in electron ionization mass spectrometry (EI-MS) are a long-standing and crucial topic in MS research. Yet, some critical relevant mechanisms are controversial and ambiguous, and information about the EI-induced H-abstraction reactions of halogenated organic compounds (HOCs) is completely in the dark. This study provides a systematic investigation of H-abstraction reactions of HOCs taking place in the EI source using 13C6-hexachlorobenzene (13C6-HCB) and 13C6-hexabromobenzene (13C6-HBB) as exemplary compounds by gas chromatography (GC)-high-resolution mass spectrometry (GC-HRMS). The H-abstraction efficiencies were evaluated with the MS signal intensity ratios of ions with H-abstraction relative to the corresponding original ions (without H-abstraction). Ion source temperatures, EI energies, and numbers of heavy isotope atoms (37Cl or 81Br) of isotopologues were investigated in terms of their effects on the H-abstraction efficiencie a better understanding of the EI-induced H-abstraction reactions of HOCs and may benefit the identification of HOPs in environmental analysis, especially for novel HOPs. Copyright © 2020 American Chemical Society.Exploring deep and ultradeep wells has rapidly become more significant to meet the global demand for oil and gas. The study of rheological and filtration-loss properties is essential to designing drilling muds and determining their performance under operational conditions. Rheological and filtration-loss properties of drilling muds were found to have a negative impact when exposed to elevated temperatures in the wells. In this study, an amphoteric polymer (abbreviated to PEX) was synthesized and characterized using a combination of analyses FTIR, SEM, 13CNMR, and TGA. The synthesized PEX was used as an additive in water-based drilling muds to improve rheological properties and reduce fluid loss at elevated temperatures (180-220 °C). The experimental results demonstrated that inclusion of an optimal concentration of PEX (0.3 wt %) into the drilling mud formulation increased the rheological properties by 62.3% and decreased the filtration loss by 63.5% at an aging temperature of 180 °C. Moreover, PEX was found to perform superbly compared to polyanionic cellulose (PAC-LV) and polyacrylamide (PAM), the widely used drilling mud additives.