https://www.selleckchem.com/products/ici-118551-ici-118-551.html The objectives of the present study are to synthesize a series of chitosan oligosaccharide-O-Terpenol (COS-O-Ter) derivatives and their implication to evaluate in vitro antibacterial activity. Herein, a general strategy is described for preparing COS-O-Ter derivatives, including substitution and deprotection reactions. The structures of COS-O-Ter derivatives were characterized by FT-IR, 1H NMR, XRD, TGA, and elemental analysis. COS-O-Ter derivatives revealed the excellent solubility and in vitro antibacterial activity. Moreover, their antibacterial activities were more sensitive to Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli) indicating the effective potential application of COS-O-Ter derivatives as natural antibacterial agents. The aforementioned study opens a pave to expand the application scope of COS and its derivatives in the food and pharmaceutical industries.Ticks (Ixodidae and Argasidae) are important arthropod vectors of various pathogens that cause human and animal infectious diseases. Many previously published studies on tick-borne pathogens focused on those transmitted by ixodid ticks. Although there are increasing reports of viral pathogens associated with argasid ticks, information on bacterial pathogens they transmit is scarce. The aim of this molecular study was to detect and characterize Rickettsia and Anaplasmataceae in three different argasid tick species, Ornithodoros faini, Ornithodoros moubata, and Argas walkerae collected in Zambia. Rickettsia hoogstraalii and Rickettsia lusitaniae were detected in 77 % (77/100) of Ar. walkerae and 10 % (5/50) of O. faini, respectively. All O. moubata pool samples (n = 124) were negative for rickettsial infections. Anaplasmataceae were detected in 63 % (63/100) of Ar. walkerae and in 82.2 % (102/124) of O. moubata pools, but not in O. faini. Phylogenetic analysis based on the concatenated sequences of 16S rRNA and groEL genes