https://www.selleckchem.com/products/s-2-hydroxysuccinic-acid.html Delhi had a high pollution load. So, the impact of local pollution in Delhi, through dispersion, was found significant in Agra. NOx hot spots (exceed the 30 μg/m3 limit) are found all across Delhi, except IGI Airport and two other locations. However, no SO2 hotspot (exceed the 60 μg/m3 limit) is found in Delhi. The proposed model output is verified with the WRF-CFD model results. Compared to the WRF-CFD model, the proposed model has overestimated NOx and SO2 concentration maximum by 14.4% and 23.5%, respectively. The overestimation occurred primarily due to ignoring atmospheric chemical reactions (e.g., acid condensation, etc.) for which the atmospheric factors were not so conducive.Aquatic environments are hotspots for the spread of antibiotic-resistant bacteria and genes due to pollution caused mainly by anthropogenic activities. The aim of this study was to evaluate the impact of wastewater effluents, informal settlements, hospital, and veterinary clinic discharges on the occurrence, antibiotic resistance profile and virulence signatures of Aeromonas spp. and Pseudomonas spp. isolated from surface water and wastewater. High counts of Aeromonas spp. (2.5 (± 0.8) - 3.3 (± 0.4) log10 CFU mL-1) and Pseudomonas spp. (0.6 (± 1.0) - 1.8 (± 1.0) log10 CFU mL-1) were obtained. Polymerase chain reaction (PCR) and MALDI-TOF characterization identified four species of Aeromonas and five of Pseudomonas. The isolates displayed resistance to 3 or more antibiotics (71% of Aeromonas and 94% of Pseudomonas). Aeromonas spp. showed significant association with the antibiotic meropenem (χ2 = 3.993, P  less then  0.05). The virulence gene aer in Aeromonas was found to be positively associated with the antibiotic resistance gene blaOXA (χ2 = 6.657, P  less then  0.05) and the antibiotic ceftazidime (χ2 = 7.537, P  less then  0.05). Aeromonas recovered from both wastewater and surface water displayed high resistance to a