https://www.selleckchem.com/GSK-3.html Solvent polarity independent SB-CS generation is also observed in GTDI films, where there is a complete absence of solvent.Oxygen vacancies are ubiquitous in TiO2 and play key roles in catalysis and magnetism applications. Despite being extensively investigated, the electronic structure of oxygen vacancies in TiO2 remains controversial both experimentally and theoretically. Here, we report a study of a neutral oxygen vacancy in TiO2 using state-of-the-art quantum chemical electronic structure methods. We find that the ground state is a color center singlet state in both the rutile and the anatase phases of TiO2. Specifically, embedded coupled cluster with singles, doubles, and perturbative triples calculations find, for an oxygen vacancy in rutile, that the lowest triplet state energy is 0.6 eV above the singlet state, and in anatase, the triplet state energy is higher by 1.4 eV. Our study provides fresh insights into the electronic structure of the oxygen vacancy in TiO2, clarifying earlier controversies and potentially inspiring future studies of defects with correlated wave function theories.The on-top pair density [Πr] is a local quantum-chemical property that reflects the probability of two electrons of any spin to occupy the same position in space. Being the simplest quantity related to the two-particle density matrix, the on-top pair density is a powerful indicator of electron correlation effects, and as such, it has been extensively used to combine density functional theory and multireference wavefunction theory. The widespread application of Π(r) is currently hindered by the need for post-Hartree-Fock or multireference computations for its accurate evaluation. In this work, we propose the construction of a machine learning model capable of predicting the complete active space self-consistent field (CASSCF)-quality on-top pair density of a molecule only from its structure and composition. Our model, trained on the GDB11