https://www.selleckchem.com/products/Mycophenolate-mofetil-(CellCept).html Glioblastoma (GBM) is the most prevalent malignant primary brain tumor in adults and exhibits a spectrum of aberrantly aggressive phenotype. Tumor cell proliferation and invasion are critically regulated by chemokines and their receptors. Recent studies have shown that the chemokine CCL5 and its receptor CCR5 play important roles in tumor invasion and metastasis. Nonetheless, the roles of the CCR5 in GBM still remain unclear. The present study provides the evidence that the chemokine receptor CCR5 is highly expressed and associated with poor prognosis in human GBM. Mechanistically, CCL5-CCR5 mediates activation of Akt, and subsequently induces proliferation and invasive responses in U87 and U251 cells. Moreover, down-regulation of CCR5 significantly inhibited the growth of glioma in U87 tumor xenograft mouse model. Finally, high CCR5 expression in GBM is correlated with increased p-Akt expression in patient samples. Together, these findings suggest that the CCR5 is a critical molecular event associated with gliomagenesis.Myocardial infarct expansion has been associated with an increased risk of infarct rupture and progression to heart failure, motivating therapies such as infarct restraint and polymer injection that aim to limit infarct expansion. However, an exhaustive review of quantitative studies of infarct remodeling reveals that only half found chronic in-plane expansion, and many reported in-plane compaction. Using a finite element model, we demonstrate that the balance between scar stiffening due to collagen accumulation and increased wall stresses due to infarct thinning can produce either expansion or compaction in the pressurized heart-potentially explaining variability in the literature-and that loaded dimensions are much more sensitive to changes in thickness than in stiffness. Our analysis challenges the concept that in-plane expansion is a central feature of post-infarction rem