This translates to worm-like micelles, solely spherical micelles, or ellipsoidal structures, as analyzed by atomic force microscopy and cryogenic transmission electron microscopy, which underlines the potential of secondary structure-driven self-assembly of synthetic polypeptides.Phosphonates represent an important source of bioavailable phosphorus in certain environments. Accordingly, many microorganisms (particularly marine bacteria) possess catabolic pathways to degrade these molecules. One example is the widespread hydrolytic route for the breakdown of 2-aminoethylphosphonate (AEP, the most common biogenic phosphonate). In this pathway, the aminotransferase PhnW initially converts AEP into phosphonoacetaldehyde (PAA), which is then cleaved by the hydrolase PhnX to yield acetaldehyde and phosphate. This work focuses on a pyridoxal 5'-phosphate-dependent enzyme that is encoded in >13% of the bacterial gene clusters containing the phnW-phnX combination. This enzyme (which we termed PbfA) is annotated as a transaminase, but there is no obvious need for an additional transamination reaction in the established AEP degradation pathway. We report here that PbfA from the marine bacterium Vibrio splendidus catalyzes an elimination reaction on the naturally occurring compound (R)-1-hydroxy-2-aminoethylphosphonate (R-HAEP). The reaction releases ammonia and generates PAA, which can be then hydrolyzed by PhnX. In contrast, PbfA is not active toward the S enantiomer of HAEP or other HAEP-related compounds such as ethanolamine and d,l-isoserine, indicating a very high substrate specificity. We also show that R-HAEP (despite being structurally similar to AEP) is not processed efficiently by the PhnW-PhnX couple in the absence of PbfA. In summary, the reaction catalyzed by PbfA serves to funnel R-HAEP into the hydrolytic pathway for AEP degradation, expanding the scope and the usefulness of the pathway itself.Semiconducting single-wall carbon nanotubes (SWCNTs) fluoresce in the near-infrared (NIR) region, and the emission wavelength depends on their chirality (n,m). Interactions with the environment affect the fluorescence and can be tailored by functionalizing SWCNTs with biopolymers such as DNA, which is the basis for fluorescent biosensors. So far, such biosensors have been mainly assembled from mixtures of SWCNT chiralities with large spectral overlap, which affects sensitivity as well as selectivity and prevents multiplexed sensing. The main challenge to gain chirality-pure sensors has been to combine approaches to isolate specific SWCNTs and generic (bio)functionalization approaches. https://www.selleckchem.com/products/ipi-549.html Here, we created chirality-pure SWCNT-based NIR biosensors for important analytes such as neurotransmitters and investigated the effect of SWCNT chirality/handedness as well as long-term stability and sensitivity. For this purpose, we used aqueous two-phase extraction (ATPE) to gain chirality-pure (6,5)-, (7,5)-, (9,4)-, and (7,iplexed sensing of the important analytes dopamine, riboflavin, H2O2, and pH. In summary, we demonstrated the assembly, characteristics, and potential of monochiral (single-color) SWCNTs for NIR fluorescence sensing applications.Homoleptic LiNacNac forms simple donor-acceptor complexes with N,N'-dicyclohexylcarbodiimide (CyN═C═NCy), triphenylphosphine oxide (Ph3P═O), and benzophenone (Ph2CO). These crystallographically characterized compounds could be regarded as model intermediates en route to reducing the N═C, P═O, and C═O bonds of unsaturated substrates. Heteroleptic NacNacMg(TMP) intriguingly functions as a TMP nucleophile both with t-BuNCO and t-BuNCS, producing a urea or thiourea derivative respectively attached to Mg, though the NacNac ligand in the former reaction also engages noninnocently with a second t-BuNCO molecule via insertion at the reactive NacNac backbone γ-carbon site.A cross-selective aza-pinacol coupling of aldehydes and imines has been developed to afford valuable β-amino alcohols. This strategy enables chemoselective conversion of aliphatic aldehydes to ketyl radicals, in the presence of more easily reduced imines and other functional groups. Upon carbonyl-specific activation by AcI, a photoinitiated Mn catalyst selectively reduces the resulting α-oxy iodide by an atom transfer mechanism. The ensuing ketyl radical selectively couples to imines, precluding homodimerization by a classical reductive approach. In this first example of reductive, ketyl coupling by atom transfer catalysis, Zn serves as a terminal reductant to facilitate Mn catalyst turnover. This new strategy also enables ketyl radical couplings to alkenes, alkynes, aldehydes, propellanes, and chiral imines.Polyphosphoesters (PPEs), a versatile class of biodegradable and biocompatible polymers, have been proposed as alternatives to poly(ethylene glycol) (PEG), which is suspected to be responsible for anaphylactic reactions in some patients after the administration of PEGylated compounds, e.g., in the current Covid-19 vaccines. We present the synthesis and characterization of a novel set of protein-polymer conjugates using the model protein myoglobin and a set of PPEs with different hydrophilicity and molar mass. We report an extensive evaluation of the (bio)physical properties of the protein within the conjugates, studying its conformation, residual activity, and thermal stability by complementary techniques (UV-vis spectroscopy, nano-differential scanning calorimetry, and fluorometry). The data underline the systematic influence of polymer hydrophilicity on protein properties. The more hydrophobic polymers destabilize the protein, the more hydrophilic PPEs protect against thermally induced aggregation and proteolytic degradation. This basic study aims at guiding the design of future PPEylated drugs and protein conjugates.A technology for systemic and repeated administration of osteogenic factors for orthopedic use is an unmet medical need. Lactoferrin (∼80 kDa), present in milk, is known to support bone growth. We discovered a lactoferrin-mimetic peptide, LP2 (an 18-residue fragment from the N-terminus of the N-lobe of human lactoferrin), which self-assembles into a nano-globular assembly with a β-sheet structure in an aqueous environment. LP2 is non-hemolytic and non-cytotoxic against human red blood cells and 3T3 fibroblasts, respectively, and appreciably stable in the human serum. LP2 through the bone morphogenetic protein-dependent mechanism stimulates osteoblast differentiation more potently than the full-length protein as well as the osteoblastic production of osteoprotegerin (an anti-osteoclastogenic factor). Consequently, daily subcutaneous administration of LP2 to rats and rabbits with osteotomy resulted in faster bone healing and stimulated bone formation in rats with a low bone mass more potently than that with teriparatide, the standard-of-care osteogenic peptide for osteoporosis.