https://www.selleckchem.com/products/BIBF1120.html DNA tandem repeats are frequently found in eukaryotic genomes. High-copy DNA repeats can serve as building blocks of complex DNA structures, but the in vitro synthesis of DNA repeats has been challenging due to complicated procedures and the high cost. Here, a new, simple method is developed using the strategy of blocking polymerase chain reaction for highly efficient DNA repeat expansion (BPRE). With BPRE, dsDNA fragments composed of more than 40 copies of the repeat sequence can be quickly produced, while the cost is reduced by at least 90%. As a typical application, reannealing of the dsDNA repeats generates elastic hydrogels, which shows a high capacity for doxycycline absorption and prolonged release.Accurate isotope ratio measurements are of high importance in various scientific fields, ranging from radio isotope geochronology of solids to studies of element isotopes fractionated by living organisms. Instrument limitations, such as unresolved isobaric inferences in the mass spectra, or cosampling of the material of interest together with the matrix material may reduce the quality of isotope measurements. Here, we describe a method for accurate isotope ratio measurements using our laser ablation ionization time-of-flight mass spectrometer (LIMS) that is designed for in situ planetary research. The method is based on chemical depth profiling that allows for identifying micrometer scale inclusions embedded in surrounding rocks with different composition inside the bulk of the sample. The data used for precise isotope measurements are improved using a spectrum cleaning procedure that ensures removal of low quality spectra. Furthermore, correlation of isotopes of an element is used to identify and reject the data points that, for example, do not belong to the species of interest. The measurements were conducted using IR femtosecond laser irradiation focused on the sample surface to a spot size of ~12 μm. Material r