In this study, to efficiently remove malodorous gas and reduce secondary pollution under mixotrophic conditions, pine bark, coal cinder, straw and mobile bed biofilm reactor (MBBR) fillers were used as packing materials in a biological trickling filter (BTF) to simultaneously treat high-concentration H2S and NH3. The results showed that the removal rate of BTF-A filled with pine bark was the highest, which was 86.31% and 94.06% under the H2S and NH3 loading rates of 53.59 g/m³·h while the empty bed residence time (EBRT) was 40.5 s. The theoretical maximum load was obtained by fitting the kinetic curve, and the value were 90.09 g H2S m-³·h-1 and 172.41 g NH3 m-³·h-1. Meanwhile, after treating with 720 ppm of NH3, the average concentration of NO3- in the BTF circulating fluid was only 127.58 mg/L, indicating the better performance of secondary pollutants control. Microbiological analysis showed that Dokdonella, Micropruina, Candidatus_Alysiosphaera, Nakamurella and Thiobacillus possessed high abundance at the genus level, and their entire percentage in four BTF reactors were 62.87%, 46.32%, 47.98%, and 57.35% respectively. It is worthwhile that the genera Comamonas and Trichococcus with heterotrophic nitrification and aerobic denitrification capabilities and proportion of 3.66%, 1.45%, 5.43%, and 3.23% were observed in four reactors.Formaldehyde as significant environmental hazard in air seriously harm the environment and human health. Although photocatalysis has demonstrated the possibility for HCHO degradation, it has long been limited by unsatisfied degradation efficiency and the unclear reaction mechanism. Here, we confirm that surface atomic arrangement of BiPO4 plays a critical role in photooxidation of HCHO via modulating the reaction pathway, offering 2.63 times enhancement of HCHO degradation efficiency. We dissect the processes in the photocatalytic reaction by DFT calculation, ROS monitoring, and in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS) investigation. https://www.selleckchem.com/products/AT9283.html Specifically, we reveal that the controlling surface atomic arrangement could modulate adsorption model from single-point to bridging, and promote activation of small molecules. Concurrently, the active surface dependent on crystal structure facilitates the efficient transformation of intermediates (HCOOH*) (reducing energy barrier from 0.41 to -0.35 eV), producing final-product (H2CO3, ∆G = -0.35 eV) while suppressing toxic by-product (CO, ∆G = 0.32 eV), which contributes to the sustained deep mineralization of HCHO with enhancement by 61.4%. The findings are crucial as they provide crystal-structure related insights into the design of efficient catalysts for photocatalytic HCHO degradation. Ultimately, current molecular understanding should unlock the solar-driven catalytic pathways for other oxidation reactions.The contamination of heavy metals in urban soil and dust is closely related to anthropogenic emissions, while to what extent the metal contamination varies among different functional areas in industrial cities remains unclear. In this study, the contamination and health risk of seven heavy metals in the soil and dust were assessed at different functional areas of Panzhihua City, Southwest China, and their sources were identified by the spatial divisions and Pb isotopes. The results showed that the contamination of V and Cr in the vanadium/steel plant (VsA) and the contamination of Cd, Pb and Zn in the iron-ore smelting (IsA) were significantly higher relative to other functional areas. The sources of the contaminated heavy metals in the soil and dust were mainly from smelting and manufacturing vanadium/steel products, coal combustion and traffic. Vanadium and Cr were the major metals primarily contributing to the noncarcinogenic and carcinogenic risks, despite the low contamination level of Cr. The results indicate that the VsA is the priority control area in the Panzhihua City, and besides V, more attention should be paid in the future to monitor Cr risk in the soil and dust because of its high contribution to the health risk.In common advanced oxidation processes, excess reagents and energy are often added to the reaction system to maintain the continuity of the reaction. These additions result in a large waste of resources and energy, which has become a bottleneck in the development of water treatment technology. In this study, we propose a new strategy to solve this problem based on a novel dual-reaction-center (DRC) Fe-ZnS quantum dots (Fe-ZnS QDs) catalyst that forms a non-equilibrium surface with an electron-polarized distribution. Through experimental and theoretical studies, it was verified that the activation of trace amounts of H2O2 could break the energy barrier for pollutants to transfer electrons. The dissolved oxygen (DO) in the reaction system could be activated by gaining energy on the surface of the Fe-ZnS QDs catalyst, and was converted to 1O2 to attack organic pollution. In addition, the pollutants themselves supplied electrons to H2O2 through the surface of the Fe-ZnS QDs catalyst to generate more •OH radicals for pollutant degradation, thus providing two fast paths for pollutant degradation. The system could drive the reaction through a trace amount of H2O2, thereby activating DO to generate 1O2 while effectively using the energy of pollutants. Therefore, the proposed system offers a new direction for the development of environmentally-friendly catalysts and greatly reduces the consumption of resources and energy.This study uses data on neighborhoods in four U.S. cities over five years to examine the relationship between fatal and non-fatal gun violence and rates of functional disability among men. Descriptive analyses indicate significant disparities in shooting rates across neighborhoods and heightened associated disability in high shooting communities. Multivariate results show that rates of non-fatal shootings correspond to greater functional disability among young men, but not older men. Fatal gun violence is not associated with increased community disability. The findings suggest that improvements in local gun violence prevention may serve to address broader community disparities in health and well-being.