https://www.selleckchem.com/products/bibo-3304-trifluoroacetate.html The roots of the new, to the best of our knowledge, results in the classical optical domain, including the polarization coherence theorem, can be understood in the light of this work.We demonstrate for the first time, to the best of our knowledge, an on-chip microwave photonic (MWP) notch filter with high stopband rejection and integrated optical carrier suppression in a phase modulator-based system. The notch filter was achieved through phase modulation to intensity modulation (PM-to-IM) transformation and dual-sideband-processing using a network of three ring resonators (RRs) in a low-loss silicon nitride (Si3N4) platform. We show simultaneous PM-to-IM conversion and optical carrier processing for enhancing the filter performance using a single RR. We achieve filtering with a high stopband rejection of >55dB, an optical carrier suppression up to 3 dB, a radio frequency link gain of 3 dB, a noise figure of 31 dB, and a spurious-free dynamic range of 100dB⋅Hz2/3. These experiments point to the importance of vectorial spectral shaping of an MWP spectrum for advanced functionalities.We have derived a systematic method to calculate the photonic band structures and mode field profiles of arbitrary space-time periodic media by adopting the plane wave expansion method and extending to the space-time domain. We have applied the proposed method to a photonic crystal with time periodic permittivity, i.e., the Floquet photonic crystal, and showed that the method efficiently predicts driving-induced opening of frequency and momentum gaps and breaking of mirror symmetry in the photonic band structures. This method enables systematic investigation of various optical phenomena in space-time periodic media, such as nonreciprocal propagation of light, parametric processes, and photonic Floquet topological phases.Nanostructured metasurfaces can manipulate the spectrum and polarization of incident light at the nanos