r development could be protected.Research and development (R&D) activities are frequently undertaken as a powerful means to improve a country's environmental performance. However, previous studies examine R&D activities as a whole, and thus do not provide detailed information, such as the carbon intensity reduction of individual actors or stages. In addition, factors that affect regional capacity for absorbing technology (absorptive capacity) are important to influence the role of R&D in carbon intensity, but they have largely been ignored in the literature. In this study, we investigate the impacts of domestic R&D on carbon intensity by classifying R&D into three stages and three actors. The results derived from a Chinese provincial panel dataset from 2000 to 2016 indicate that domestic R&D is effective for improving carbon intensity. R&D at different stages and involving different actors have statistically different impacts on carbon intensity. Further analysis using the panel threshold model provides new evidence that the nexus between carbon intensity and domestic R&D is nonlinear. Technology absorptive capacity, which is denoted by the full-time equivalent of R&D personnel, can alleviate the negative role of R&D in increasing carbon intensity and strengthen the positive effect of R&D on decreasing carbon intensity. According to the empirical evidence, some insightful policy implications for China to decrease the carbon intensity are presented.Research in the field of heart muscle tissue engineering is focused on the fabrication of heart muscle tissue which can be utilized to repair, replace and/or augment functionality of damaged and/or diseased tissue. In the simplest embodiment, bioengineering heart muscle tissue constructs involves culture of cardiomyocytes within natural or synthetic scaffolds. Functional integration of the cells with the scaffold and subsequent remodeling lead to the formation of 3D heart muscle tissue and physiological cues like mechanical stretch, electrical stimulation and perfusion are necessary to guide tissue maturation and development. Potential applications for bioengineered heart muscle include use as grafts to repair or replace damaged tissue, as models for basic research and as tools for high-throughput screening of pharmacological agents. In this article, we provide a methodological process to bioengineer functional 3D heart muscle tissue and discuss state of the art and potential challenges in each of the nine-step tissue fabrication process.Quaternary ammonium salts (QASs) have been widely used for disinfection purposes because of their low price, high efficacy and low human toxicity for decades. However, precise mechanisms of action nor the powerful versatile agent against all antimicrobial species are known. In this study we have prepared 43 novel N-alkyl monoquaternary ammonium salts including 7 N,N-dialkyl monoquaternary ammonium salts differing bearing alkyl chain either of 12, 14 or 16 carbons. Together with 15 already published QASs we have studied the antimicrobial efficacy of all water-soluble compounds together with standard benzalkonium salts against Gram-positive (G+) and Gram-negative (G-) bacteria, anaerobic spore-forming Cl. difficile, yeasts, filamentous fungi and enveloped Varicella zoster virus (VZV). To address the mechanism of action, lipophilicity seems to be a key parameter which determines antimicrobial efficacy, however, exceptions are likely to occur and therefore QSAR analysis on the efficacy against G+ and G- bacteria was applied. We showed that antibacterial activity is higher when the molecule is larger, more lipophilic, less polar, and contains fewer oxygen atoms, fewer methyl groups bound to heteroatoms or fewer hydrogen atoms bound to polarized carbon atoms. In addition, from an application point of view, we have formulated mixtures, on the basis of obtained efficiency of individual compounds, in order to receive wide-spectrum agent. All formulated mixtures completely eradicated tested G+ and G- strains, including the multidrug-resistant P. aeruginosa as well as in case of yeasts. However, effect on A. fumigatus, Cl. difficile and VZV the exposition towards mixture resulted in significant reduction only. Finally, 3 out of 4 formulated mixtures were safer than reference commercial agent based on benzalkonium salts only in the skin irritation test using reconstructed human epidermidis. One of the main goals of epidemiological studies is to build models capable of forecasting the prevalence of a contagious disease, in order to propose public health policies for combating its propagation. Here, the aim is to evaluate the influence of immune individuals in the processes of contagion and recovery from varicella. This influence is usually neglected. An epidemic model based on probabilistic cellular automaton is introduced. By using a genetic algorithm, the values of three parameters of this model are determined from data of prevalence of varicella in Belgium and Italy, in a pre-vaccination period. This methodology can predict the varicella prevalence (with average relative error of 2%-4%) in these two European countries. Belgium data can be explained by ignoring the role of immune individuals in the infection propagation; however, Italy data can be explained by considering contagion exclusively mediated by immune individuals. The role of immune individuals should be accurately delineated in investigations on the dynamics of disease propagation. In addition, the proposed methodology can be adapted for evaluating, for instance, the role of asymptomatic carriers in the novel coronavirus spread. The role of immune individuals should be accurately delineated in investigations on the dynamics of disease propagation. In addition, the proposed methodology can be adapted for evaluating, for instance, the role of asymptomatic carriers in the novel coronavirus spread.Sulphur mustard (HD) was the most widely produced chemical warfare agent (CWA) in the history of chemical warfare (CW). Simultaneously, the loads of HD account as by far the largest fraction of the sea-dumped CW. Nowadays its presence in the marine ecosystems recognized as a serious threat for marine users and maritime industries. Although, during over a decade of research much has been done to assess the environmental threats linked with underwater chemical munitions. There are, however, essential gaps in scientific knowledge including scarce information about the aquatic toxicity thresholds of HD and its degradation products. Standardized biotests were performed according to the Organisation for Economic Co-operation and Development (OECD) Test No. 202 Daphnia sp. Acute Immobilisation Test guidelines. https://www.selleckchem.com/products/GDC-0449.html Obtained results provide a solid foundation for comparison and categorisation of threats of HD and its degradation products. With the D. magna LC50 aquatic acute toxicity threshold at as low as 224 ± 12 μg × L-1, 1,2,5-trithiepane is very toxic, being one of the most toxic CWA degradation products that have been investigated up to date.