Osteosarcoma is the most common primary bone sarcoma and is often diagnosed in the 2nd-3rd decades of life. Response to the aggressive and highly toxic neoadjuvant methotrexate-doxorubicin-cisplatin (MAP) chemotherapy schedule is strongly predictive of outcome. Outcomes for patients with osteosarcoma have not significantly changed for over thirty years. There is a need for more effective treatment for patients with high risk features but also reduced treatment-related toxicity for all patients. Predictive biomarkers are needed to help inform clinicians to de-escalate or add therapy, including immune therapies, and to contribute to future clinical trial designs. Here, we review a variety of approaches to improve outcomes and quality of life for patients with osteosarcoma with a focus on incorporating toxicity reduction, immune therapy and molecular analysis to provide the most effective and least toxic osteosarcoma therapy.Our objective was to analyze the information in Spanish on YouTube about the influenza vaccine. In August 2020, a search was conducted on YouTube using the terms "Vacuna gripe", "Vacuna influenza", and "Vacuna gripa". Associations between the type of authorship, country of publication, and other variables (such as tone, hoaxes, and vaccination recommendations) were studied via univariate analysis. A total of 100 videos were evaluated; 57.0% were created in Mexico (24.0%), Argentina (17.0%), and Spain (16.0%), and 74.0% were produced by mass media or health professionals. Positive messages were detected in 65.0%. The main topics were the benefits of the vaccine (59.0%) and adverse effects (39.0%). Hoaxes were detected in 19 videos. User-generated content, compared to that of health professionals, showed a higher probability of hoaxes (odds ratio (OR) = 15.56), a lower positive tone (OR = 0.04), and less evidence of recommendations to vaccinate pregnant individuals (OR = 0.09) and people aged 60/65 or older. Videos published in Spain, in comparison with those from Hispanic America, presented significant differences in the positive tone of their messages (OR = 0.19) and in the evidence of the benefits of vaccination (OR = 0.32). A higher probability of hoaxes was detected in videos from Spain and the USA. Information in Spanish about the influenza vaccine on YouTube is usually not very complete. Spanish health professionals are urged to produce pro-vaccination videos that counteract hoaxes, and users in Hispanic America should be advised to consult videos produced in Hispanic American countries by health professionals to obtain reliable information.Since its first patent (1897), commercial dry feed (CDF) for dogs has diversified its formulation to meet the nutritional needs of different breeds, age, or special conditions and establish a foundation for integration of these pets into urban lifestyles. The risk of aflatoxicosis in dogs has increased because the ingredients used to formulate CDF have also proliferated, making it difficult to ensure the quality required of each to achieve the safety of the entire CDF. This review contains a description of the fungi and aflatoxins detected in CDF and the ingredients commonly used for their formulation. The mechanisms of action and pathogenic effects of aflatoxins are outlined; as well as the clinical findings, and macroscopic and microscopic lesions found in aflatoxicosis in dogs. In addition, alternatives for diagnosis, treatment, and control of aflatoxins (AF) in CDF are analyzed, such as biomarkers of effect, improvement of blood coagulation, rate of elimination of AF, control of secondary infection, protection of gastric mucosa, reduction of oxidative stress, use of chemo-protectors, sequestrants, grain-free CDF, biocontrol, and maximum permitted limits, are also included.In this study, we designed a simple, rapid, sensitive and selective surface plasmon resonance (SPR) sensor for detection of L-phenylalaine by utilizing molecular imprinting technology. l-phenylalanine imprinted and non-imprinted poly(2-hydroxyethyl methacrylate-methacryloyl-l-phenylalanine) polymeric films were synthesized onto SPR chip surfaces using ultraviolet polymerization. l-phenyalanine imprinted and non-imprinted SPR sensors were characterized by using contact angle, atomic force microscopy and ellipsometry. After characterization studies, kinetic studies were carried out in the concentration range of 5.0-400.0 μM. The limit of detection and quantification were obtained as 0.0085 and 0.0285 μM, respectively. The response time for the test including equilibration, adsorption and desorption was approximately 9 min. The selectivity studies of the l-phenylalanine imprinted SPR sensor was performed in the presence of d-phenylalanine and l-tryptophan. Validation studies were carried out via enzyme-linked immunosorbent analysis technique in order to demonstrate the applicability and superiority of the l-phenylalanine imprinted SPR sensor.The over-reliance on antibiotics and their enormous misuse has led to warnings of a future without effective medicines and so, the need for alternatives to antibiotics has become a must. https://www.selleckchem.com/products/sodium-succinate.html Non-traditional antibacterial treatment was performed by using an aray of nanocomposites synergised with exposure to electromagnetic waves. In this manuscript, electrospun poly(vinyl alcohol) (PVA) nanofiber mats embedded with silver nanoparticles (Ag NPs) were synthesized. The nanocomposites were characterized by Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), Current-Voltage (I-V) curves, and Thermogravimetric analysis (TGA) along with analysis of antibacterial impact against E. coli and S. aureus bacteria, studied by bacterial growing analysis, growth kinetics, and cellular cytotoxicity. The results indicated a spherical grain shape of silver of average size 20 nm and nanofibers' mean diameter of less than 100 nm. The nanocomposite mats showed good exposure to bacteria and the ability to sustain release of silver for a relatively long time. Moreover, the applied electromagnetic waves (EMWs) were shown to be a synergistic co-factor in killing bacteria even at low concentrations of Ag NPs. This caused pronounced alterations of the bacterial preserved packing of the cell membrane. Thereby, the treatment with nanocomposite mats under EM wave exposure elucidated maximum inhibition for both bacterial strains. It was concluded that the functioning of nanofiber with silver nanoparticles and exposure to electromagnetic waves improved the antibacterial impact compared to each one alone.