https://www.selleckchem.com/products/alpha-naphthoflavone.html Quantitative systems pharmacology (QSP) proved to be a powerful tool to elucidate the underlying pathophysiological complexity that is intensified by the biological variability and overlapped by the level of sophistication of drug dosing regimens. Therapies combining immunotherapy with more traditional therapeutic approaches, including chemotherapy and radiation, are increasingly being used. These combinations are purposed to amplify the immune response against the tumor cells and modulate the suppressive tumor microenvironment (TME). In order to get the best performance from these combinatorial approaches and derive rational regimen strategies, a better understanding of the interaction of the tumor with the host immune system is needed. The objective of the current work is to provide new insights into the dynamics of immune-mediated TME and immune-oncology treatment. As a case study, we will use a recent QSP model by Kosinsky et al. [J. Immunother. Cancer 6, 17 (2018)] that aimed to reproduce the dynamics ofing information on the issue of therapy.We study geometrical and dynamical properties of the so-called discrete Lorenz-like attractors. We show that such robustly chaotic (pseudohyperbolic) attractors can appear as a result of universal bifurcation scenarios, for which we give a phenomenological description and demonstrate certain examples of their implementation in one-parameter families of three-dimensional Hénon-like maps. We pay special attention to such scenarios that can lead to period-2 Lorenz-like attractors. These attractors have very interesting dynamical properties and we show that their crises can lead, in turn, to the emergence of discrete Lorenz shape attractors of new types.We construct a complex system of N chiral fields, each regarded as a node or a constituent of a complex field-theoretic system, which interact by means of chirally invariant potentials across a network of connection