https://www.selleckchem.com/products/Elesclomol.html In this report, the peroxymonosulfate activation over Ag/ZnO heterojunction under visible light (Ag/ZnO/PMS/Vis) for p-nitrophenol (p-NP) contaminant degradation was conducted in detail. Herein, the catalyst dosage was decreased, and the results showed that a dosage of 0.5 g L-1 Ag/ZnO and 4 mM PMS almost completely degraded 30 mg L-1 p-NP after 90 min of irradiation. In addition, the PMS activation mechanism of Ag/ZnO/PMS/Vis system was proposed by investigations of the influence of PMS concentration, the FTIR spectra, UV-Vis spectroscopy, and electrochemical analyses. Additionally, the role of SO4•- in the photocatalytic reaction is determined by a combination of a trapping test using isopropanol and tert-butanol as probe compounds and electron spin resonance (ESR) spectroscopy. This report provides a potential alternative to remove persistent organic contaminants in sewage using PMS incorporated with Ag/ZnO under visible light irradiation.Concentrations of several toxic disinfection by-products (DBP), notably haloacetonitriles (e.g., trichloroacetonitrile, TCAN) and haloketones (e.g., di- and trichloropropanone, DCPN and TCPN, respectively) are affected by chlorination conditions and the inherent instability of these DBPs. In this study, effects of temperature, chlorine dose and reaction time on the formation of TCAN, DCPN and TCPN were interpreted using the approach of differential absorbance spectroscopy. Experimental data obtained for a wide range of water quality conditions demonstrate that in some cases the concentrations of some of the unstable DBPs increased rather than decreased at low temperatures and realistically long contact times. Despite the presence of pronounced changes of the kinetics of generation and degradation of these DBPs at varying temperatures and chlorine doses, their concentrations were strongly correlated with the concurrent changes of spectroscopic properties of DOM quantified via d