Fast photochemical oxidation of proteins (FPOP) has demonstrated the ability to inform on the higher order structure of proteins. Recent technological advances have extended FPOP to live cells (IC-FPOP) using multiple cell lines and in vivo (IV-FPOP) using C. elegans. These innovations allow proteins to be studied in their native cellular environment. Hydroxyl radicals are generated via the photoloysis of hydrogen peroxide. Hydrogen peroxide is a signaling molecule that can induce changes to some proteins in the cell limiting the proteins that can be studied by IC-FPOP. Here, we evaluate the sulfate radical anion as a footprinting label in IC-FPOP with sodium persulfate as the precursor. Our findings show a 1.5-fold increase in the number of modified proteins compared to IC-FPOP using hydroxyl radicals at the same precursor concentration demonstrating the amenability of this radical with IC-FPOP.We introduce a novel grafting-through polymerization strategy to synthesize dynamic bottlebrush polymers and elastomers in one step using light to construct a disulfide-containing backbone. The key starting material-α-lipoic acid (LA)-is commercially available, inexpensive, and biocompatible. When installed on the chain end(s) of poly(dimethylsiloxane) (PDMS), the cyclic disulfide unit derived from LA polymerizes under ultraviolet (UV) light in ambient conditions. Significantly, no additives such as initiator, solvent, or catalyst are required for efficient gelation. Formulations that include bis-LA-functionalized cross-linker yield bottlebrush elastomers with high gel fractions (83-98%) and tunable, supersoft shear moduli in the ∼20-200 kPa range. An added advantage of these materials is the dynamic disulfide bonds along each bottlebrush backbone, which allow for light-mediated self-healing and on-demand chemical degradation. These results highlight the potential of simple and scalable synthetic routes to generate unique bottlebrush polymers and elastomers based on PDMS.Wearable superwettable surfaces with dynamic tunable wettability and self-healability are promising for advanced wearable electronics, whereas have been rarely reported. Herein, a flexible superhydrophobic shape memory film (SSMF) with switchable surface wettability and high strain sensitivity has been conveniently fabricated. The surface topography of the SSMF can be finely adjusted by a reversible stretching (bending)/recovery way, which makes it feasible to control the surface-switchable adhesive superhydrophobicity by simple body movements, demonstrating great advantages in selective droplet manipulation and smart control of droplet movement. Moreover, benefitting from the hierarchical micro/nanostructures and outstanding sensing performance, the flexible SSMFs with good adaptivity and durability can serve as smart wearable sensors attached to human skin to achieve full-range and real-time detection of human motions and intelligent control of Internet of Things. More interestingly, the unique dynamic dewetting property enables the sensors to work in a humid environment or rainy days. Overall, this work successfully integrates dynamic tunable superwettability into design of intelligent wearable electronics with multifunctions. The obtained SSMF-based wearable surface with dynamic dewetting properties reveals great potential in versatile application fields such as liquid-repellent electronics, wearable droplet manipulators, and all-weather intelligent actuators.The lithium (Li) metal polymer battery (LMPB) is a promising candidate for solid-state batteries with high safety. However, high voltage stability of such a battery has been hindered by the use of polyethylene oxide (PEO), which oxidizes at a potential lower than 4 V versus Li. Herein, we adopt the polymer-in-salt electrolyte (PISE) strategy to circumvent the disadvantage of the PEO-lithium bis(fluorosulfonyl)imide (LiFSI) system with EO/Li ≤ 8 through a dry ball-milling process to avoid the contamination of the residual solvent. The obtained solid-state PISEs exhibit distinctly different morphologies and coordination structures which lead to significant improvement in oxidative stability. P(EO)1LiFSI has a low melting temperature, a high ionic conductivity at 60 °C, and an oxidative stability of ∼4.5 V versus Li/Li+. With an effective interphase rich in inorganic species and a good stability of the hybrid polymer electrolyte toward Li metal, the LMPB constructed with Li||LiNi1/3Co1/3Mn1/3O2 can retain 74.4% of capacity after 186 cycles at 60 °C under the cutoff charge voltage of 4.3 V. The findings offer a promising pathway toward high-voltage stable polymer electrolytes for high-energy-density and safe LMPBs.Fraction collectors are common pieces of equipment that are essential for the activity of many biochemistry, pharmacology, and drug discovery laboratories. However, these devices are not very versatile when it comes to tailoring them to specific needs, such as different size collection tubes, sequences of tube exchange, or parallel collection. In addition, these systems are relatively expensive, especially for small laboratories or for those in less developed countries. The emergence of 3D printers and the availability of cheap, popular electronic control devices are changing the way laboratory equipment can be made and designed. https://www.selleckchem.com/products/apr-246-prima-1met.html Here, we describe how to build your own fraction collector, indicating all the elements and providing the full instructions needed to make a fraction collector that can be adapted to almost any kind of rack and tubes (3D files, the parts required, the electronic circuits, and the software). This device can be used in complex protocols, adapted to liquid chromatography and for parallel collection from perfused tissues. The total cost of the whole device is around €100.Surface chemistry is a major factor that determines the wettability of materials, and devising broadly applicable coating strategies that afford tunable and selective surface properties required for next-generation materials remains a challenge. Herein, we report fluorinated metal-organic coatings that display water-wetting and oil-repelling characteristics, a wetting phenomenon different from responsive wetting induced by external stimuli. We demonstrate this selective wettability with a library of metal-organic coatings using catechol-based coordination and silanization (both fluorinated and fluorine-free), enabling sensing through interfacial reconfigurations in both gaseous and liquid environments, and establish a correlation between the coating wettability and polarity of the liquids. This selective wetting performance is substrate-independent, spontaneous, durable, and reversible and occurs over a range of polar and nonpolar liquids (60 studied). These results provide insight into advanced liquid-solid interactions and a pathway toward tuning interfacial affinities and realizing robust, selective superwettability according to the surrounding conditions.