https://www.selleckchem.com/products/bgb-283-bgb283.html E. pubescens polyembryonic and hexaploid populations formed a homogeneous group, but monoembryonic plants were more variable. E. estevesiae populations were monoembryonic with smaller stomata. In contrast, some E. pubescens monoembryonic populations further south presented larger stomata. Despite these outliers, possibly mixed populations, stomatal size and embryonic pattern differed from northern to southern populations. Embryonic pattern and stomatal size indicated that northernmost populations of Eriotheca STSC (E. estevesiae) are diploid and sexual. Southernmost populations, mostly polyembryonic and with large stomata, are hexaploid and apomictic. This is in agreement with geographic parthenogenesis and range expansion of apomictic lineages to southern habitats available after the last glacial maximum.Despite the ecological significance of the mutualistic relationship between Symbiodiniaceae and reef-building corals, the molecular interactions during establishment of this relationship are not well understood. This is particularly true of the transcriptional changes that occur in the symbiont. In the current study, a dual RNA-sequencing approach was used to better understand transcriptional changes on both sides of the coral-symbiont interaction during the colonization of Acropora tenuis by a compatible Symbiodiniaceae strain (Cladocopium goreaui; ITS2 type C1). Comparison of transcript levels of the in hospite symbiont 3, 12, 48 and 72 hr after exposure to those of the same strain in culture revealed that extensive and generalized down-regulation of symbiont gene expression occurred during the infection process. Included in this "symbiosis-derived transcriptional repression" were a range of stress response and immune-related genes. In contrast, a suite of symbiont genes implicated in metabolism was upregulated in the symbiotic state. The coral data support the hypothesis that immune-suppression and arrest