https://www.selleckchem.com/products/odm208.html Noise is a common problem in animal communication. We know little, however, about how animals communicate in the presence of noise using multimodal signals. Multimodal signals are hypothesised to be favoured by evolution because they increase the efficacy of detection and discrimination in noisy environments. We tested the hypothesis that female túngara frogs' responses to attractive male advertisement calls are improved in noise when a visual signal component is added to the available choices. We tested this at two levels of decision complexity (two and three choices). In a two-choice test, the presence of noise did not reduce female preferences for attractive calls. The visual component of a calling male, associated with an unattractive call, also did not reduce preference for attractive calls in the absence of noise. In the presence of noise, however, females were more likely to choose an unattractive call coupled with the visual component. In three-choice tests, the presence of noise alone reduced female responses to attractive calls and this was not strongly affected by the presence or absence of visual components. The responses in these experiments fail to support the multimodal signal efficacy hypothesis. Instead, the data suggest that audio-visual perception and cognitive processing, related to mate choice decisions, are dependent on the complexity of the sensory scene.Golden hamsters have four times the body size of mice, raise very large litters and are required to produce large quantities of milk during the 18-day lactation period. We have previously proposed that they may be prone to being limited by their heat dissipation capacity. Studies where lactating females are shaved to elevate their heat dissipation capacity have yielded conflicting data so far. With their short pregnancy of ∼18 days, the large litters and the reported high skin temperatures, they may serve as an ideal model to elucidate the role