https://www.selleckchem.com/products/hygromycin-b.html © 2020 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc.Edible films, as novel degradable materials in food packaging, play an important role in removing consumers' concerns about environmental pollution and food contaminations. Carboxymethyl cellulose (CMC)-gelatin (G) edible films with the ratio 4 to 1 was selected as the optimal film based on physical, mechanical, and physicochemical findings. Then, the effects of 0, 300, 450, and 600 ppm Dianthus barbatus essential oil (DbE) on water vapor permeability, tensile strength, elongation at break, water solubility, glass transition temperature, color, oxygen permeability, and antimicrobial activities on the optimal film were investigated. CMC G (41) containing 600 ppm DbE as the antibacterial-antioxidant film was the best formulae (p less then .05) for preventing three types of aflatoxin-producing mold including A. flavus (PTCC-5004), A. parasiticus (PTCC-5286), and A. parasiticus (PTCC-5018) on pistachios for 6 months. © 2020 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc.Produce growers using surface or well water to irrigate their crops may require an appropriate water treatment system in place to meet the water quality standard imposed by FSMA Produce Safety Rule. This study evaluated the potential of using ultraviolet (UV-C) treatment in reducing the microbial population in agricultural water. Waters with turbidity levels ranging from 10.93 to 23.32 Nephelometric Turbidity Units (NTU) were prepared by mixing pond water and well water. The waters were inoculated with a cocktail of generic Escherichia coli (ATCC 23716, 25922, and 11775) and then treated with UV-C light (20-60 mJ/cm2). All tested doses of the UV-C treatment reduced the E. coli levels significantly (p less then .05) in the water samples with the turbidity levels up to 23.32 NTU. The decrease in the turbidity from 23.32 to 10.93 NTU increased the