https://www.selleckchem.com/products/buloxibutid.html Underachieved capacity and low voltage plateau is ubiquitous in conventional aqueous magnesium ion full batteries. Such limitations originate from the electrochemistry and the low carrier-hosting ((de)intercalation) potential of electrode materials. Herein, via a strategy of enhancing the electrochemistry through carrier-hosting potential compensation, high-energy Mg2+ /Na+ hybrid batteries are achieved. A Mg1.5 VCr(PO4 )3 (MVCP) cathode is coupled with FeVO4 (FVO) anode in a new aqueous/organic hybrid electrolyte, giving reliable high-voltage operation. This operation enables more sufficient (de)intercalation of hybrid carriers (Mg2+ /Na+ ), thereby enhancing the reversible capacity remarkably (233.4 mA h g-1 at 0.5 A g-1 , 92.7 Wh kg-1electrode , that is, ≥1.75-fold higher than those in conventional aqueous electrolytes). The relatively high Na+ -hosting potential of the electrodes compensates for the low Mg2+ -hosting potential and widens/elevates the discharge plateau of the full battery up to 1.50 V. Mechanism study further reveals an unusual phase transformation of FVO to Fe2 V3 and the low-lattice-strain pseudocapacitive (de)intercalation chemistry of MVCP.Bombyx mori latent virus (BmLV) is a positive, single-stranded insect RNA virus closely related to plant maculaviruses. BmLV was first isolated from Bombyx mori ovary-derived cell line BmN-4, and this virus has already infected most B. mori-derived cultured cell lines. We previously reported that small interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) pathways function cooperatively to maintain the amount of BmLV RNA for normal BmN-4 cell growth. On the other hand, BmLV does not propagate in B. mori larvae. Here we conducted BmLV injection into the larval body cavities of B. mori, and examined BmLV accumulation in larval ovaries where siRNA and piRNA pathways are both active, to investigate whether this in vivo resistance is governed by small RNA