https://www.selleckchem.com/products/AZD6244.html The differential diagnosis of small round cell tumors (SRCT) crucially relies on the synoptic evaluation of morphology, immunohistochemical patterns, and molecular features. Though the implementation of broad RNA sequencing in diagnostic molecular pathology routines has substantially changed the standards of molecular affirmation of diagnoses, fluorescence in situ hybridization (FISH) on formalin-fixed, paraffin-embedded (FFPE) tissue sections is still an elementary tool to provide a rapid molecular corroboration of diagnoses, essentially required for therapeutic decisions. We discuss here the major FISH approaches currently employed in diagnostic molecular pathology, addressing classic Ewing sarcoma and differential diagnoses among SRCT which cannot sufficiently be ruled out by immunohistochemistry. This chapter will approach technical issues but particularly strategies and pitfalls in the interpretation of FISH patterns.The diagnosis of Ewing sarcoma requires the integration of the information generated from numerous techniques, some of them being very sophisticated. However, the first steps of the diagnostic process are crucial to achieve the maximum possible diagnostic performance. In this chapter we will review how to handle the diagnostic specimen from its collection, how to prepare it for diagnosis, how to make a complete pathology report, and provide guidance for the reasonable use of immunohistochemical techniques in this malignancy.Liquid biopsies enable noninvasive therapy monitoring in patients with solid tumors. Specific serum markers such as proteins, hormones, or enzymes released from tumor cells or in response to tumor growth can be used for quantification of the tumor burden. However, only a fraction of pediatric tumors has none of these serum markers, but tumor-specific genetic alterations represent reliable alternatives. Here we describe a method for using genomic fusion sequences as liquid biopsy