https://www.selleckchem.com/products/NXY-059.html Circ_CELSR1 knockdown enhanced paclitaxel sensitivity and cell apoptosis and repressed cell viability, colony formation and cell cycle process in paclitaxel-resistant ovarian cancer cells. For mechanism analysis, circ_CELSR1 could positively modulate SIK2 expression via sponging miR-149-5p. MiR-149-5p inhibition effectively restored the impacts of circ_CELSR1 knockdown on paclitaxel resistance and cell progression in paclitaxel-resistant ovarian cancer cells. MiR-149-5p overexpression suppressed paclitaxel resistance and cell progression in paclitaxel-resistant ovarian cancer cells by interacting with SIK2. In addition, circ_CELSR1 silencing impeded paclitaxel resistance of ovarian cancer in vivo. Circ_CELSR1 improved the resistance of ovarian cancer to paclitaxel by regulating miR-149-5p/SIK2 axis.Vinpocetine is widely used to treat cerebrovascular diseases. However, the effect of vinpocetine to treat hepatocellular carcinoma (HCC) has not been investigated. In this study, we revealed that vinpocetine was associated with antiproliferative activity in HCC cells, but induced cytoprotective autophagy, which restricted its antitumor activity. Autophagy inhibitors improved the antiproliferative activity of vinpocetine in HCC cells. Sorafenib is effective to treat advanced HCC, but the effect of autophagy induced by sorafenib is indistinct. We demonstrated vinpocetine plus sorafenib suppressed the cytoprotective autophagy activated by vinpocetine in HCC cells and significantly induced apoptosis and suppressed cell proliferation in HCC cells. In addition, vinpocetine plus sorafenib activates glycogen synthase kinase 3β (GSK-3β) and subsequently inhibits cytoprotective autophagy induced by vinpocetine in HCC cells. Meanwhile, overexpression of GSK-3β was efficient to increase the apoptosis induced by vinpocetine plus sorafenib in HCC cells. Our study revealed that vinpocetine plus sorafenib could suppress the cytoprotective