https://www.selleckchem.com/products/pnd-1186-vs-4718.html The findings expand our knowledge of peach-infecting viruses and alphanucleorhabdoviruses. The leaf blight caused by the genus Alternaria is one of the most epidemic diseases on watermelon, and A. tenuissima is the dominant pathogenic species in China. Mycoviruses are found ubiquitously in filamentous fungi, and an increasing number of novel mycoviruses infecting the genus Alternaria have been reported. In this study, a mycovirus from A. tenuissima strain SD-BZF-12 was identified and characterized, whose genome size was very similar with Alternaria alternata chrysovirus 1-N18 (AaCV1-N18). The dsRNA1- and dsRNA2-encoded proteins of the virus had 99 % identities with counterparts of AaCV1-N18; and the dsRNA3- and dsRNA4-encoded proteins of the virus showed the 80 % and 94 % sequence identities with proteins deduced from dsRNA4 and dsRNA3 of AaCV1-N18, respectively. Intriguingly, dsRNA5 of the virus encoded a truncated protein with 68 amino acids (aa) by comparing with 115 aa of AaCV1-N18 dsRNA5. Phylogenetic analysis of RNA-dependent RNA polymerase domain suggested that the virus clustered together with AaCV1-N18. Based on these characteristics, the mycovirus was identified to be a novel strain of AaCV1 and designated as AaCV1-AT1. In addition, no obvious differences were observed on colony morphology between AaCV1-AT1-infected and virus-cured strains of A. tenuissima; however, AaCV1-AT1 infection reduced colony growth rate and spore production ability on host fungus, and increased the median effective concentration of difenoconazole or tebuconazole on its host. This is the first report of AaCV1-AT1 associated with A. tenuissima. Sex determination is a rapidly evolving biological process controlled by differential gene expression. One family of transcription factors that initiate sex-specific gene expression and differentiation in many animal species are the Doublesex and Mab-3 (DM) domain proteins. While much