https://www.selleckchem.com/products/BKM-120.html This study applies parallel reaction monitoring (PRM) proteomics and CRISPR-Cas9 mutagenesis to identify relationships between cell metabolism, cell death, and disease resistance. In oscul3a (oscullin3a) mutants, OsCUL3a-associated molecular switches are responsible for disrupted cell metabolism that leads to increased total lipid content in rice grain, a late accumulation of H2O2 in leaves, enhanced Xanthomonas oryzae pv. oryzae disease resistance, and suppressed panicle and first internode growth. In oscul3a mutants, PRM-confirmed upregulated molecular switch proteins include lipoxygenases (CM-LOX1 and CM-LOX2), suggesting a novel connection between ferroptosis and rice lesion mimic formation. Rice immunity-associated proteins OsNPR1 and OsNPR3 were shown to interact with each other and have opposing regulatory effects based on the cell death phenotype of osnpr1/oscul3a and osnpr3/oscul3a double mutants. Together, these results describe a network that regulates plant growth, disease resistance, and grain quality that includes the E3 ligase OsCUL3a, cell metabolism-associated molecular switches, and immunity switches OsNPR1 and OsNPR3.Pt is the best catalyst for the oxygen reduction reactions (ORRs), but it is far too slow. Huang and co-workers showed that dealloying 5 nm Ni7Pt3 nanowires (NW) led to 2 nm pure Pt jagged NW (J-PtNW) with ORRs 50 times faster than Pt/C. They suggested that the undercoordinated surface Pt atoms, mechanical strain, and high electrochemically active surface area (ECSA) are the main contributors. We report here multiscale atomic simulations that further explain this remarkably accelerated ORR activity from an atomistic perspective. We used the ReaxFF reactive force field to convert the 5 nm Ni7Pt3 NW to the jagged 2 nm NW. We applied quantum mechanics to find that 14.4% of the surface sites are barrierless for Oads + H2Oads → 2OHads, the rate-determining step (RDS). The reason is that the