https://www.selleckchem.com/products/hro761.html 12% sensitivity, 97.60% specificity, 97.60% recognition accuracy, and a false detection rate of 0.76 per hour in the invasive EEG dataset, which included 566.57[Formula see text]h of EEG recording data from 21 patients. Taken together, the results show that TD has a good detection effect for seizure classification and that this method has high computational speed and great potential for real-time diagnosis.Epilepsy is a neurological disease that is very common worldwide. Patient's electroencephalography (EEG) signals are frequently used for the detection of epileptic seizure segments. In this paper, a high-resolution time-frequency (TF) representation called Synchrosqueezing Transform (SST) is used to detect epileptic seizures. Two different EEG data sets, the IKCU data set we collected, and the publicly available CHB-MIT data set are analyzed to test the performance of the proposed model in seizure detection. The SST representations of seizure and nonseizure (pre-seizure or inter-seizure) EEG segments of epilepsy patients are calculated. Various features like higher-order joint TF (HOJ-TF) moments and gray-level co-occurrence matrix (GLCM)-based features are calculated using the SST representation. By using single and ensemble machine learning methods such as k-Nearest Neighbor (kNN), Logistic Regression (LR), Naive Bayes (NB), Support Vector Machine (SVM), Boosted Trees (BT), and Subspace kNN (S-kNN), EEG features are classified. The proposed SST-based approach achieved 95.1% ACC, 96.87% PRE, 95.54% REC values for the IKCU data set, and 95.13% ACC, 93.37% PRE, 90.30% REC values for the CHB-MIT data set in seizure detection. Results show that the proposed SST-based method utilizing novel TF features outperforms the short-time Fourier transform (STFT)-based approach, providing over 95% accuracy for most cases, and compares well with the existing methods. We report a case of successful thoracic endovascular aortic repa