https://www.selleckchem.com/ Mesenchymal stromal cells (MSC) are multipotent precursor cells that can be derived from a variety of tissue sources, with a working definition based on immunophenotyping and cell differentiation capacity. Despite historical roots in the field of tissue engineering, they have generated great interest as cell therapies for their immune regulatory function, which has led to numerous clinical trials for a range of inflammatory and autoimmune conditions. Importantly, due to the lack of traditional MHC expression and their expression of other immune regulatory proteins, they can be used from third party donors without generating a dangerous alloreactivity. After 20 years of clinical trials, they have earned themselves an excellent safety record but are currently only approved for use in Canada, New Zealand, Japan, South Korea and Europe due to a lack of consistent efficacy data. In the United States, the indication that has seen the most progress is steroid refractory acute graft-versus-host disease (SR-aGVHD). Issues with early clinical trials can be attributed to both challenges with defining optimal patient populations and trial design as well as limitations related to commercial manufacturing. Earlier this year, the encouraging data for a repeat Phase III trial in pediatric patients with SR-aGVHD was published. This review provides information on the proposed mechanism of action of MSCs, clinical utilization of MSCs with focus on SR-aGVHD and potential modalities that can improve the efficacy of MSCs. CF patients demonstrate clinical heterogeneity and much remains unknown about how to risk stratify individuals for disease progression. The most common cystic fibrosis mutation, F508del, is a protein folding mutation that has been shown in vitro to negatively affect proteostasis and CFTR transcription. Since CFTR is expressed in the nasal epithelium, we hypothesized that by using unbiased transcriptomics we could gain clinically relevant ins