https://www.selleckchem.com/products/Sapogenins-glycosides.html The CLQ and TLR of NH4+-N for PVL and PVGL were - 114.613 mg and - 63.43%, - 121.364 mg, and - 67.16%, respectively. Further, the addition of biochar as a modifier significantly slowed down the substrate layer TP leaching effect and improved the interception effect of NH4+-N and TN. Moreover, although polyacrylamide addition in the substrate layer aggravated the nitrogen leaching phenomenon in the EGRs' outflow, but the granular structure substrate layer constructed by it exhibited a significantly inhibited TP leaching effect.The partial or full replacement of natural aggregates with recycled ones can lessen the harmful effects of concrete industry on the environment. Despite offering sustainability benefits, recycled aggregate concrete (RAC) is inherently brittle under tension similar to natural aggregate concrete (NAC). The present study aimed to enhance the ductility of plain RAC by using hybrid fibers. The effect of single and hybrid fibers was studied on the flexural behavior (flexural strength, flexural toughness, residual strength), splitting tensile strength, and compressive strength of RAC. Polypropylene fiber (PPF) and hooked steel fiber (HSF) and hybrid fiber combination (0.85% HSF + 0.15% PPF) were used in RAC and NAC at a 1% volume fraction of concrete. The results showed that RAC with 1% PPF performed poorly compared to the RAC with 1% HSF. RAC incorporating 1% HSF or hybrid HSF-PPF fibers showed overall better performance than plain NAC. A substantial increment in the tensile and flexural strength of RAC was observed with the incorporation singular HSF and hybrid HSF-PPF. Hybrid fibers have higher efficiency than singular HSF in both RAC and NAC. Residual strength, flexural strength, and flexural toughness of RAC with HSF and hybrid fibers were notably higher compared to the conventional plain NAC. The addition of 0.85% HSF + 0.15% PPF is beneficial to the imperviousness of concrete, and