https://www.selleckchem.com/products/ms1943.html Although dental prosthesis materials such as metal alloys, ceramics, and cured resin composite have long been utilized to restore teeth, their bond strength and hardness values are not well matched to human enamel. Prosthesis detachment and opposing enamel wear are major concerns in restorative dentistry. An experimental biopolymer, hybridized enamel, was synthesized and utilized as a dental prosthesis to compare hardness and tensile bond strength (TBS) with those of commercial materials. Vickers hardness (VHN) with a 100 g loading for 15 s at eight indentations on each specimen (n = 20) was measured. TBSs between prostheses and two types of resin luting agents (n = 10), Super-Bond C&B and All-Bond2 + Duo-Link, were tested. Fractured surfaces and the luting resin-prosthesis interface were examined under a stereomicroscope or a scanning electron microscope (SEM). Statistically significant differences in the TBS and hardness were revealed (p less then 0.05). The experimental biopolymer provided a hardness value comparable with human enamel and the highest TBS for both luting agent types. The SEM micrograph demonstrated a honeycomb-like pattern interface between the experimental biopolymer and luting resin. These results suggest that this experimental biopolymer may be a better restorative material to protect from natural enamel loss from tooth reduction or attrition and prevent prosthesis detachment during mastication.Electrospinning can be used to produce nanofiber mats containing diverse nanoparticles for various purposes. Magnetic nanoparticles, such as magnetite (Fe3O4), can be introduced to produce magnetic nanofiber mats, e.g., for hyperthermia applications, but also for basic research of diluted magnetic systems. As the number of nanoparticles increases, however, the morphology and the mechanical properties of the nanofiber mats decrease, so that freestanding composite nanofiber mats with a high content of nanopa