To explore the mechanism of how lead (Pb) and cadmium (Cd) stress affects photosynthesis of mulberry (Morus alba L.), we looked at the effects of different concentrations of Pb and Cd stress (at 100 and 200 μmol L-1), which are two heavy metal elements, on leaf chlorophyll (Chl), photosynthesis gas exchange, Chl fluorescence, and reactive oxygen species (ROS) metabolism in mulberry leaves. The results showed that higher concentrations of Pb and Cd reduced leaf Chl content, especially in Chl a where content was more sensitive than in Chl b. Under Pb and Cd stress, the photosynthetic carbon assimilation capacity of mulberry leaves was reduced, which was a consequence of combined limitations of stomatal and non-stomatal factors. The main non-stomatal factors were decreased photosystem II (PSII) and photosystem I (PSI) activity and carboxylation efficiency (CE). Damage to the donor side of the PSII reaction center was greater than the acceptor side. After being treated with 100 μmol L-1 of Pb and Cd, mulberry leanificantly higher than those under Cd stress. Thus under Pb stress, the degree of photoinhibition and oxidative damage of PSII and PSI in mulberry leaves were significantly lower than under Cd stress. The bioavailability and toxicity of mercury (Hg) are dependent on its chemical speciation, in which methylmercury (MeHg) is the most toxic compound. Inorganic Hg can be transformed into MeHg in anaerobic conditions. Subsequent accumulation and biomagnification in the food chain pose a potential threat to human health. Previous studies have confirmed that paddy soil is an important site for MeHg production, and rice fields are an important source of MeHg in terrestrial ecosystems. Rice (Oryza sativa L.) is recently confirmed as a potential bioaccumulator plant of MeHg. Understanding the behaviour of Hg in rice paddies is important, particularly the mechanisms involved in Hg sources, uptake, toxicity, detoxification, and accumulation in crops. This review highlights the issue of MeHg-contaminated rice, and presents the current understanding of the Hg cycling in the rice paddy ecosystem, including the mechanism and processes of Hg species accumulation in rice plants and Hg methylation/demethylation processes in rice paddies and the primary controlling factors. The review also identified various research gaps in previous studies and proposes future research objectives to reduce the impact of Hg-contamination in rice crops. Cognitive models of posttraumatic stress disorder (PTSD) propose that overgeneralized beliefs involving lack of control are important to development and maintenance of the disorder. In the absence of a strong evidence base regarding controllability in PTSD, we examined whether PTSD was associated with increased sensitivity to alterations in controllability over stressful stimuli. Participants with (PTSD+, n = 113) and without (PTSD-, n = 115) symptoms were recruited from a crowdsourcing platform and randomized to receive either Controllable aversive noise, Uncontrollable aversive noise, or No noise before completing a subsequent aversive noise task in which all participants lost control over aversive noise. Participants then completed an avoidance task that assessed the delay between selecting and viewing a potentially distressing stimulus. PTSD+, but not PTSD-, participants who initially had control over an aversive noise but then lost the control were more avoidant of subsequent distress than those who either did not previously have control over the noise or was not exposed to the noise. Importantly, this pattern was evident in females but not males. These results highlight that people with PTSD are vulnerable to the adverse effects of losing control, and this can contribute to avoidance. The findings that this vulnerability is heightened in females may shed light on the greater risk of females to develop PTSD. Cadmium (Cd) pollution poses serious risks to human health and the rice consumption is a major contribution to dietary intake of this toxic metal. In addition, Cd causes interference to iron (Fe) uptake by rice, leading to Fe deficiency, which is a common malnutrition worldwide. Sulfur (S) is essential for the rice yield and quality; however, the roles of S supply in the Cd and Fe absorption and distribution in rice have not been systematically investigated. Here, we conducted a hydroponic experiment to examine the effects of S application on the uptake and translocation of Cd and Fe in rice under Cd treatment (1.0 μM) combined with four S levels (0, 1.75, 3.5, 7.0 mM). Rice growth was suppressed by Cd but the toxicity was alleviated with S treatment, which also led to decline of Cd concentrations in rice roots, stems and leaves. In the case of low S (1.75 mM), the Fe plaque on the root surface did not decline in the presence of Cd, but it markedly decreased with the increase of S supply (3.5 and 7.0 mM). The Fe contents in rice roots and leaves consistently increased with the S provision regardless of Cd treatment. In addition, the Cd exposure and S supply significantly promoted syntheses of thiol molecules and nicotianamine (NA), but the NA levels in rice tissues decreased when the S addition reached 7.0 mM. https://www.selleckchem.com/products/trastuzumab-deruxtecan.html Taken together, results of this study demonstrate that sufficient supply of S may augment Fe bioavailability and minimize Cd accumulation in rice under hydroponic conditions. Microplastics have attracted much attention in recent years as they can interact with pollutants in water environment. However, nanoplastics (NPs) with or without the surface functionalization modification have not been thoroughly explored. Here, the sorption behaviors of two fluoroquinolones (FQs), including norfloxacin (NOR) and levofloxacin (LEV) on polystyrene NPs (nano-PS) and carboxyl-functionalized polystyrene NPs (nano-PS-COOH) were investigated. The results showed that sorption isotherms were nonlinear and well fitted by Langmuir model. The sorption capacities of NOR and LEV on nano-PS-COOH were higher than those on nano-PS, and their physical interactions, including polar interaction, electrostatic interaction and hydrogen bonding may be the dominant mechanisms. Moreover, the increase of pH firstly increased the sorption of two FQs on NPs and then decreased because NOR and LEV had a reverse charge at different pH values. Salinity and dissolved organic matter both inhibited the sorption process. These findings show that NPs with or without the surface functionalization modification have different sorption behaviors for environmental pollutants, which deserve our further concern.