0 Nagels et al.Invasive apple snails, Pomacea canaliculata and P. maculata, have a widespread distribution globally and are regarded as devastating pests of agricultural wetlands. The two species are morphologically similar, which hinders species identification via morphological approaches and species-specific management efforts. Advances in molecular genetics may contribute effective diagnostic tools to potentially resolve morphological ambiguity. DNA barcoding has revolutionized the field of taxonomy by providing an alternative, simple approach for species discrimination, where short sections of DNA, the cytochrome c oxidase subunit I (COI) gene in particular, are used as 'barcodes' to delineate species boundaries. In our study, we aimed to assess the effectiveness of two mitochondrial markers, the COI and 16S ribosomal deoxyribonucleic acid (16S rDNA) markers for DNA barcoding of P. canaliculata and P. https://www.selleckchem.com/products/Gefitinib.html maculata. The COI and 16S rDNA sequences of 40 Pomacea specimens collected from six localities in Peninsular Malaysia wee snails, the COI molecular marker is a better barcoding marker and could be utilized in various population genetic studies of P. canaliculata and P. maculata. ©2020 Kannan et al.Pterosaur specimens with complete and well-preserved palatal region are rare. Here we describe new and previously collected specimens of the pterodactyloid pterosaur Dsungaripterus weii that are three-dimensionally preserved and provide new anatomical information for this species. Among the unique features is a lateral process of the pterygoid divided into two parts an anterior thin, parabolic arc shaped element that separates the secondary subtemporal and the subtemporal fenestrae, followed by a dorsoventrally flattened portion that is directed inside the subtemporal fenestrae. The interpterygoid fenestrae join forming an irregular oval shape with two symmetrical posterior notches and a smooth anterior margin. Among all pterosaurs where the palate is known, the posterior configuration of the palate of D. weii is similar to some azhdarchoids, which is consistent with the suggested phylogenetic position of the Dsungaripteridae as closely related to the Azhdarchoidea. Furthermore, we identify symmetrical grooves on the lateral surface of the upper and lower jaws, that likely represent the impression of the edge of a keratinous sheath that would cover the upturned toothless rostrum during foraging activity, most likely consisting of hard elements, as has been previously assumed. Wear facets on the teeth also support this feeding mode. © 2020 Chen et al.While various sources increasingly release nutrients to the Red Sea, knowledge about their effects on benthic coral reef communities is scarce. Here, we provide the first comparative assessment of the response of all major benthic groups (hard and soft corals, turf algae and reef sands-together accounting for 80% of the benthic reef community) to in-situ eutrophication in a central Red Sea coral reef. For 8 weeks, dissolved inorganic nitrogen (DIN) concentrations were experimentally increased 3-fold above environmental background concentrations around natural benthic reef communities using a slow release fertilizer with 15% total nitrogen (N) content. We investigated which major functional groups took up the available N, and how this changed organic carbon (Corg) and N contents using elemental and stable isotope measurements. Findings revealed that hard corals (in their tissue), soft corals and turf algae incorporated fertilizer N as indicated by significant increases in δ15N by 8%, 27% and 28%, respectively. Among the investigated groups, Corg content significantly increased in sediments (+24%) and in turf algae (+33%). Altogether, this suggests that among the benthic organisms only turf algae were limited by N availability and thus benefited most from N addition. Thereby, based on higher Corg content, turf algae potentially gained competitive advantage over, for example, hard corals. Local management should, thus, particularly address DIN eutrophication by coastal development and consider the role of turf algae as potential bioindicator for eutrophication. © 2020 Karcher et al.Purpose of Review This review summarises recent advances in the field of epigenetics in order to understand the aetiology of type 2 diabetes (T2D). Recent Findings DNA methylation at a number of loci has been shown to be robustly associated with T2D, including TXNIP, ABCG1, CPT1A, and SREBF1. However, due to the cross-sectional nature of many epidemiological studies and predominant analysis in samples derived from blood rather than disease relevant tissues, inferring causality is difficult. We therefore outline the use of Mendelian randomisation (MR) as one method able to assess causality in epigenetic studies of T2D. Summary Epidemiological studies have been fruitful in identifying epigenetic markers of T2D. Triangulation of evidence including utilisation of MR is essential to delineate causal from non-causal biomarkers of disease. Understanding the causality of epigenetic markers in T2D more fully will aid prioritisation of CpG sites as early biomarkers to detect disease or in drug development to target epigenetic mechanisms in order to treat patients.Background Single-cell RNA-sequencing (scRNA-seq) is a rapidly evolving technology that enables measurement of gene expression levels at an unprecedented resolution. Despite the explosive growth in the number of cells that can be assayed by a single experiment, scRNA-seq still has several limitations, including high rates of dropouts, which result in a large number of genes having zero read count in the scRNA-seq data, and complicate downstream analyses. Methods To overcome this problem, we treat zeros as missing values and develop nonparametric deep learning methods for imputation. Specifically, our LATE (Learning with AuToEncoder) method trains an autoencoder with random initial values of the parameters, whereas our TRANSLATE (TRANSfer learning with LATE) method further allows for the use of a reference gene expression data set to provide LATE with an initial set of parameter estimates. Results On both simulated and real data, LATE and TRANSLATE outperform existing scRNA-seq imputation methods, achieving lower mean squared error in most cases, recovering nonlinear gene-gene relationships, and better separating cell types.