https://www.selleckchem.com/products/TG100-115.html Herein we report the discovery of 2,4-1H-imidazole carboxamides as novel, biochemically potent, and kinome selective inhibitors of transforming growth factor β-activated kinase 1 (TAK1). The target was subjected to a DNA-encoded chemical library (DECL) screen. After hit analysis a cluster of compounds was identified, which was based on a central pyrrole-2,4-1H-dicarboxamide scaffold, showing remarkable kinome selectivity. A scaffold-hop to the corresponding imidazole resulted in increased biochemical potency. Next, X-ray crystallography revealed a distinct binding mode compared to other TAK1 inhibitors. A benzylamide was found in a perpendicular orientation with respect to the core hinge-binding imidazole. Additionally, an unusual amide flip was observed in the kinase hinge region. Using structure-based drug design (SBDD), key substitutions at the pyrrolidine amide and the glycine resulted in a significant increase in biochemical potency.In Alzheimer's disease (AD), amyloid-β (Aβ) oligomers are considered key mediators of synaptic dysfunction and cognitive impairment. These unstable intermediate Aβ species can interfere with different cellular organelles, leading to neuronal cell death, through the formation of Ca2+-permeable membrane pores, impairment in the levels of acetylcholine neurotransmitters, increased insulin resistance, promotion of pro-inflammatory cascades, among others. Based on a series of evidences that indicate the key role of glycosaminoglycans (GAGs) in amyloid plaque formation, we evaluated the capacity of four monosaccharides, i.e., glucosamine (GlcN), N-acetyl glucosamine (GlcNAc), glucosamine-6-sulfate (GlcN6S), and glucosamine-6-phosphate (GlcN6P), to reduce the Aβ-mediated pathological hallmarks. The tested monosaccharides, in particular, GlcN6S and GlcN6P, were able to interact with Aβ aggregates, reducing neuronal cell death, Aβ-mediated damage to the cellular membrane, acetylcholinestera