https://www.selleckchem.com/products/citarinostat-acy-241.html Darunavir (3R,3aS,6aR)-hexahydrofuro[2,3-b]furan-3-yl [(2S,3R)-4-[(4-aminophenyl)sulfonyl] (isobutyl)amino-3-hydroxy-1-phenyl-2-butanyl]carbamate is a synthetic non-peptide protease inhibitor. On June 2006, it was first approved by the Food and Drug administration (FDA) for treatment of resistant type-1 of the human immunodeficiency virus (HIV). In July 2016, the FDA expanded the approval for use of darunavir in pregnant women with HIV infection. Darunavir prevents the replication of HIV virus by inhibiting the catalytic activity of the HIV-1 protease enzyme, and selectively inhibits the cleavage of HIV encoded Gag-Pol polyproteins in virus-infected cells, which prevents the formation of mature infectious virus particles. Darunavir is unique among currently available protease inhibitors because it maintains antiretroviral activity against a variety of multidrug-resistant HIV strains. This article discusses, by a critical extensive review of the literature, the description of darunavir in terms of its names, formulae, elemental composition, appearance, and use in the treatment of HIV-infected patients. The article also discusses the methods for preparation of darunavir, its physical-chemical properties, analytical methods for its determination, pharmacological properties, and dosing information. Over the last years, the most relevant results in the context of polyp detection were achieved through deep learning techniques. However, the most common obstacles in this field are the small datasets with a reduced number of samples and the lack of data variability. This paper describes a method to reduce this limitation and improve polyp detection results using publicly available colonoscopic datasets. To address this issue, we increased the number and variety of images from the original dataset. Our method consists on adding polyps to the dataset images. The developed algorithm performs a rigorous selection of