https://www.selleckchem.com/products/BKM-120.html Analyses revealed a significant effect of vHC inhibition that was dependent on the type of threat exposure. Specifically, DREADD-induced silencing of vHC neurons reduced anxiety-like behavior in the EPM and LDT, without reliably affecting footshock-induced fear. These data add to a growing literature implicating the vHC as a key region involved in controlling the expression of anxiety in rodents, primates and humans.Astrocytes are activated after central nervous system (CNS) injury, such as spinal cord injury (SCI). Activated astrocytes can form glial scar to block nerve regeneration. Dentin sialophosphoprotein (DSPP), a member of the SIBLING (Small integrin-binding ligand N-linked glycoproteins) family, has been reported to contribute to the proliferation and migration of different types of tumor cells, including glioma. However, the functions of DSPP in reactive astrocytes after CNS injury remain unknown. In this study, starvation-serum stimulation model in astrocytes was conducted to explore this issue. Our results showed that DSPP expression was increased in reactive astrocytes comparing to normal ones. Meanwhile, up-regulation of DSPP was accompanied with PCNA and GFAP. To explore the role of DSPP in astrocytes, we overexpressed DSPP with recombinant GFP-DSPP plasmid and the results showed that overexpression of DSPP could promote the proliferation and migration of the cells, the important characteristics of reactive astrocytes. In addition, overexpression of DSPP obviously increased the activation of Akt/mTOR pathway in astrocytes. Taken together, we demonstrated that DSPP may play a key role in the proliferation and migration of astrocytes, suggesting that targeting DSPP might be a promising therapeutic strategy for treating CNS injury which characterized by glia scar formation.Molecule's mechanism of action interacting with CasL 1 (MICAL1) in spinal cord injury (SCI) is unclear. This study aimed to detect the