Furthermore, An. gambiae s.s. were attracted to a treated goat at an equivalent degree (47.3%) as to their preferred human host (52.7%), even when the preferred host was present in the same environment. CONCLUSIONS The findings indicate that human host-seeking mosquitoes can be diverted into feeding on non-preferred hosts despite the close proximity of their favoured host, hence reducing chances for the transmission of blood-borne parasites.BACKGROUND Type 2 diabetes increases the risk of coronary heart disease (CHD), yet the mechanisms involved remain poorly described. Polygenic risk scores (PRS) provide an opportunity to understand risk factors since they reflect etiologic pathways from the entire genome. We therefore tested whether a PRS for CHD influenced risk of CHD in individuals with type 2 diabetes and which risk factors were associated with this PRS. METHODS We tested the association of a CHD PRS with CHD and its traditional clinical risk factors amongst individuals with type 2 diabetes in UK Biobank (N = 21,102). We next tested the association of the CHD PRS with atherosclerotic burden in a cohort of 352 genome-wide genotyped participants with type 2 diabetes who had undergone coronary angiograms. RESULTS In the UK Biobank we found that the CHD PRS was strongly associated with CHD amongst individuals with type 2 diabetes (OR per standard deviation increase = 1.50; p = 1.5 × 10- 59). But this CHD PRS was, at best, only weakly associated with traditional clinical risk factors, such as hypertension, hyperlipidemia, glycemic control, obesity and smoking. Conversely, in the angiographic cohort, the CHD PRS was strongly associated with multivessel stenosis (OR = 1.65; p = 4.9 × 10- 4) and increased number of major stenotic lesions (OR = 1.35; p = 9.4 × 10- 3). CONCLUSIONS Polygenic predisposition to CHD is strongly associated with atherosclerotic burden in individuals with type 2 diabetes and this effect is largely independent of traditional clinical risk factors. This suggests that genetic risk for CHD acts through atherosclerosis with little effect on most traditional risk factors, providing the opportunity to explore new biological pathways.BACKGROUND Antimicrobial prophylaxis is an evidence-proven strategy for reducing procedure-related infections; however, measuring this key quality metric typically requires manual review, due to the way antimicrobial prophylaxis is documented in the electronic medical record (EMR). Our objective was to electronically measure compliance with antimicrobial prophylaxis using both structured and unstructured data from the Veterans Health Administration (VA) EMR. We developed this methodology for cardiac device implantation procedures. METHODS With clinician input and review of clinical guidelines, we developed a list of antimicrobial names recommended for the prevention of cardiac device infection. We trained the algorithm using existing fiscal year (FY) 2008-15 data from the VA Clinical Assessment Reporting and Tracking-Electrophysiology (CART-EP), which contains manually determined information about antimicrobial prophylaxis. We merged CART-EP data with EMR data and programmed statistical software to flag an anly in hand-written clinician notes in a format that cannot be electronically searched. CONCLUSIONS We developed a methodology with high accuracy to measure guideline concordant use of antimicrobial prophylaxis before cardiac device procedures using data fields present in modern EMRs. This method can replace manual review in quality measurement in the VA and other healthcare systems with EMRs; further, this method could be adapted to measure compliance in other procedural areas where antimicrobial prophylaxis is recommended.BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a devastating disease with a median survival of only three to 5 years. Fibroblast proliferation is a hallmark of IPF as is secretion of extracellular matrix proteins from fibroblasts. However, it is still uncertain how IPF fibroblasts acquire the ability to progressively proliferate. Periostin is a matricellular protein highly expressed in the lung tissues of IPF patients, playing a critical role in the pathogenesis of pulmonary fibrosis. However, it remains undetermined whether periostin affects lung fibroblast proliferation. METHODS In this study, we first aimed at identifying periostin-dependently expressed genes in lung fibroblasts using DNA microarrays. We then examined whether expression of cyclins and CDKs controlling cell cycle progression occur in a periostin-dependent manner. We next examined whether downregulation of cell proliferation-promoting genes by knockdown of periostin or integrin, a periostin receptor, using siRNA, is reflected in the cell patients also required periostin for maximum proliferation. Moreover, CP4715 downregulated proliferation along with expression of cell-cycle-related genes in IPF lung fibroblasts as well as in normal lung fibroblasts. CONCLUSIONS Periostin plays a critical role in the proliferation of lung fibroblasts and the present results provide us a solid basis for considering inhibitors of the periostin/integrin αVβ3 interaction for the treatment of IPF patients.BACKGROUND Citric acid, a commodity product of industrial biotechnology, is produced by fermentation of the filamentous fungus Aspergillus niger. A requirement for high-yield citric acid production is keeping the concentration of Mn2+ ions in the medium at or below 5 µg L-1. Understanding manganese metabolism in A. niger is therefore of critical importance to citric acid production. To this end, we investigated transport of Mn2+ ions in A. niger NRRL2270. https://www.selleckchem.com/products/combretastatin-a4.html RESULTS we identified an A. niger gene (dmtA; NRRL3_07789), predicted to encode a transmembrane protein, with high sequence identity to the yeast manganese transporters Smf1p and Smf2p. Deletion of dmtA in A. niger eliminated the intake of Mn2+ at low (5 µg L-1) external Mn2+ concentration, and reduced the intake of Mn2+ at high (> 100 µg L-1) external Mn2+ concentration. Compared to the parent strain, overexpression of dmtA increased Mn2+ intake at both low and high external Mn2+ concentrations. Cultivation of the parent strain under Mn2+ ions limitation conditions (5 µg L-1) reduced germination and led to the formation of stubby, swollen hyphae that formed compact pellets.