https://www.selleckchem.com/products/elexacaftor.html We show that an increasingly strong thermal rectification effect occurs in the thermodynamic limit in a one-dimensional, graded rotor lattice with nearest-neighboring interactions only. The underlying mechanism is related to the transition from normal to abnormal heat conduction behavior observed in the corresponding homogeneous lattices as the temperature decreases. In contrast and in addition to that by invoking long-range interactions, this finding provides a distinct scenario to make the thermal rectification effect robust.We examine the equilibrium fluctuation spectrum of a semiflexible filament segment in a network. The effect of this cross linking is to modify the mechanical boundary conditions at the end of the filament. We consider the effect of both tensile stress in the network and its elastic compliance. Most significantly, the network's compliance introduces a nonlinear term into the filament Hamiltonian even in the small-bending approximation. We analyze the effect of this nonlinearity upon the filament's fluctuation profile. We also find that there are three principal fluctuation regimes dominated by one of the following (i) network tension, (ii) filament bending stiffness, or (iii) network compliance. This work provides the theoretical framework necessary to analyze activity microrheology, which uses the observed filament fluctuations as a noninvasive probe of tension in the network.This work addresses the construction of a reduced-order model based on a multigroup maximum entropy formulation for application to high-enthalpy nonequilibrium flows. The method seeks a piecewise quadratic representation of the internal energy-state populations by lumping internal energy levels into groups and by applying the maximum entropy principle in conjunction with the method of moments. The use of higher-order polynomials allows for an accurate representation of the logarithm of the distribution of the low-lying