Biomonitoring studies are helpful tools and can increase our knowledge on time trends in human blood concentrations of PFASs how they relate to emission trends and the potential prenatal exposure for future generations. In this study, serum was sampled in cross-sections of men and women who were 30 years old in each of the years 1986, 1994, 2001, and 2007 in Northern Norway and analyzed for 23 PFASs. Differences in serum concentrations across sampling years were investigated graphically and with significance testing and compared with those observed in our previous longitudinal study using repeated individual measurements in older men in the same years. The results demonstrate overall increasing blood burdens of PFASs in men and women in reproductively active ages during 1986-2001 and decreases until 2007. However, longer chained PFASs were still increasing in 2007 indicating divergent time trends between the different PFASs, underlining the importance of continued biomonitoring. Comparisons between 30-year-old men and older men within the same population demonstrated variation in time trends in the exact same years, underlining that biomonitoring studies must regard historic exposures and birth cohort effects.This study presents a comprehensive literature review and gives an insight into the increasing research trends that are based on the discipline of green technology (GTs) in the manufacturing industry. Prior research in this field indicates that there is a scarcity of research on the topic. Therefore, this study seeks to draft a multi-perspective literature review that is based on GTs in the manufacturing industry. Moreover, to make this analysis more detailed, the science-mapping technique and the quantitative approach were also applied on 5734 bibliographic references that were extracted from the web of science. Ultimately, the focus of the research is to understand the tendencies and trends in journals, institutions, and the main areas of research, along with the integration style of these elements in the previous literature that has been written on the subject of GTs. This technique also helps to fill in the research gap, address the limitations of existing literature, and shed light on the various possible directions this could lead to for future research. The implications of this research offer wide directives for editors, researchers, research institutions, policymakers, and practitioners.In recent years, a growing number of scholars have employed various proxies of environmental degradation to understand the reasons behind rising environmental degradation. However, very few studies have considered consumption-based carbon emissions, even though a clear understanding of the impact of consumption patterns is essential for redirecting the pattern to more sustainable consumption. Thus, this study takes a step forward by using consumption-based carbon emissions (CCO2) as a proxy of environmental degradation using the novel non-linear ARDL technique for Chilefrom 1990 to 2018. To the best understanding of the investigators, no prior studies have investigated the drivers of consumption-based carbon emissions utilizing non-linear ARDL. The study employed ADF and KSS (non-linear) tests to check the data series' stationary level. Additionally, the symmetric and asymmetric ARDL approaches are utilized to explore cointegration and long-run linkages. According to the results, there is no symmetric cointegration among the variables; however, the empirical estimates reveal a long-run asymmetric connection between the indicators and CCO2 emissions. The novel results from the asymmetric ARDL indicate that negative and positive changes in economic growth deteriorate the quality of the environment. Interestingly, a reduction in economic growth makes a more dominant contribution to environmental degradation. Moreover, positive changes in renewable energy usage improve the quality of Chile's environment, inferring that the country can achieve a reduction in environmental degradation by boosting renewable energy consumption. Surprisingly, the study found that technological innovation is ineffective in reducing consumption-based carbon emissions, which implies that Chile's technological innovation is not directed towards manufacturing green technology. Finally, the policy implications are discussed with respect to reducing consumption-based carbon emissions.In this work, Co-Ce-Zr/γ-Al2O33 particle electrodes were prepared for the efficient degradation of ciprofloxacin (CIP). Co-Ce-Zr/γ-Al2O3 particle electrodes were analyzed with a scanning electron microscope (SEM), X-Ray Diffraction (XRD), X-Ray Fluorescence Spectrometer (XRF), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). According to the results, significant amounts of Co3O4, CeO2, and ZrO2 were formed on the Co-Ce-Zr/γ-Al2O3 particle electrodes. It was shown that when the conditions of the reaction system were at pH=6, conductivity of 4 ms/cm, current of 0.2 A, initial pollutant concentration of 100 mg/L, and material dosage of 15 g, CIP could be completely degraded within 40 min, and the energy consumed in the reaction was 41.3 kWh/kg CIP. The rate of total organic carbon (TOC) removal by Co-Ce-Zr/γ-Al2O3 particle electrodes was recorded to be approximately 52.6%. Using a response surface methodology, we explored the optimal operating conditions. https://www.selleckchem.com/products/th5427.html At the same time, we also explored the influence of inorganic anions in water and actual water medium on the rate of CIP removal. In addition, the ESR data proved that the main active substance in the reaction system was ·OH. The degradation intermediates were investigated, and the possible mechanism was proposed. Thus, this research provided a new solution for the treatment of antibiotic-containing wastewater.Waterpipe tobacco smoking (WTS) is an emerging behavior worldwide, especially among the youth. It continues to spike in the Middle-Eastern region. WTS is associated with many harmful health-related outcomes.Objective Herein, the attitude, knowledge, and factors affecting the knowledge of university students toward the detrimental effects of WTS were examined. This was a cross-sectional study where university students filled an online questionnaire that was available between October 2019 and May 2020. A total of 966 questionnaires were filled. About 40% of participants were current waterpipe smokers. Around 30% of participants stated that WTS is not addictive, and about third of them indicated that smoking waterpipe is an essential part of social gathering and is socially accepted behavior. Half of participants (55.8%) were knowledgeable about the major harmful consequences of WTS. Older students were more knowledgeable as compared to younger ones. In contrast, students from non-medical colleges and waterpipe smokers were less knowledgeable in comparison to those in medical colleges and non-smokers, respectively.